Skip to main content

A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing


This paper proposes the Internet of Things-based real-time adaptive traffic signal control strategy. The proposed model consists of three-layer; edge computing layer, fog computing layer, and cloud computing layer. The edge computing layer provides real-time and local optimization. The middle layer, which is the fog computing layer, performs a real-time and global optimization process. The cloud computing layer, which is the top layer, acts as a control center and optimizes the parameters of the fog layer and the edge layer. The proposed strategy uses the Deep Q-Learning algorithm for the optimization process in all three layers. This study employs the SUMO traffic simulator for performance evaluation. These results are compared with the results of adaptive traffic control methods. The output of this study shows that the proposed model can reduce waiting times and travel times while increasing travel speed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control,. IEEE Access. 7, 40797–40809 (2019)

    Article  Google Scholar 

  2. Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control,. Transp. Res. Part C: Emerg. Technol. 5, 3–4 (1997)

    Article  Google Scholar 

  3. McCrea, J., Moutari, S.: “A hybrid macroscopic-based model for traffic flow in road networks,“. Eur. J. Oper. Res. 207(2), 676–684 (2010)

    MathSciNet  Article  Google Scholar 

  4. Sun, C., Luo, Y., Li, J.: Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China,. J. Clean. Prod. 172, 488–496 (2018)

    Article  Google Scholar 

  5. Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health. 9(1), 1–12 (2010)

    Article  Google Scholar 

  6. Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering. Pearson/Prentice Hall (2004)

  7. Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization,. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)

    Article  Google Scholar 

  8. Zhou, P., Fang, Z., Dong, H., Liu, J., Pan, S.: “Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system,“ in IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017: IEEE, pp. 307–310. (2017)

  9. Ali, M.E.M., Durdu, A., Celtek, S.A., Yilmaz, A.: “An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator,“. IEEE Access. 9, 102985–102997 (2021)

    Article  Google Scholar 

  10. Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control,. ACM Comput. Surv. (CSUR). 50(3), 1–38 (2017)

    Article  Google Scholar 

  11. Ali, M.E.M., Durdu, A., Çeltek, S.A., Gültekin, S.S.:“Fuzzy logic and webster’s optimal cycle based decentralized coordinated adaptive traffic control method,“ (2020)

  12. Wei, H., Zheng, G., Gayah, V., Li, Z.: “A survey on traffic signal control methods,“ arXiv preprint arXiv:08117, 2019. (1904)

  13. Celtek, S.A., Durdu, A., Ali, M.E.M.: “Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning,“International Journal of Intelligent Transportation Systems Research, (2021). /06/29 2021.

  14. Celtek, S.A., Durdu, A., Ali, M.E.M.: “Real-time Traffic Signal Control with Swarm Optimization Methods,“ Measurement, July 2020 2020

  15. Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing,. Expert Syst. Appl. 42(3), 1538–1550 (2015)

    Article  Google Scholar 

  16. Webster, F.: “Traffic signal settings, road research technical paper no. 39,“Road Research Laboratory, (1958)

  17. Gartner, N.H., Stamatiadis, C.: Arterial-based control of traffic flow in urban grid networks,. Math. Comput. Model. 35, 5–6 (2002)

    MathSciNet  Article  Google Scholar 

  18. Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control,“. In: Autonomic road transport support systems, pp. 47–66. Springer (2016)

  19. Boukerche, A., Zhong, D., Sun, P.: “A Novel Reinforcement Learning-based Cooperative Traffic Signal System through Max-pressure Control,“IEEE Transactions on Vehicular Technology, (2021)

  20. Shaikh, P.W., El-Abd, M., Khanafer, M., Gao, K.: “A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem,“IEEE Transactions on Intelligent Transportation Systems, (2020)

  21. Celtek, S.A., Durdu, A.: “An Operant Conditioning Approach For Larga Scale Social Optimization Algorithms,“. Konya Mühendislik Bilimleri Dergisi. 8, 38–45 (2020)

    Google Scholar 

  22. Abdoos, M.: “Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control,“IEEE Intelligent Systems, (2020)

  23. Liang, X., Du, X., Wang, G., Han, Z.: “A deep reinforcement learning network for traffic light cycle control,“. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)

    Article  Google Scholar 

  24. Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control,. IEEE Trans. cybernetics. 50(6), 2687–2700 (2019)

    Article  Google Scholar 

  25. Zhang, C., Jin, S., Xue, W., Xie, X., Chen, S., Chen, R.: “Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem,“IEEE Transactions on Vehicular Technology, (2021)

  26. Boukerche, A., Zhong, D., Sun, P.: “FECO: An Efficient Deep Reinforcement Learning-based Fuel-Economic Traffic Signal Control Scheme,“IEEE Transactions on Sustainable Computing, (2021)

  27. Joo, H., Ahmed, S.H., Lim, Y.: “Traffic signal control for smart cities using reinforcement learning,“Computer Communications, (2020)

  28. Kaffash, S., Nguyen, A.T., Zhu, J.: Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,. Int. J. Prod. Econ. 231, 107868 (2021)

    Article  Google Scholar 

  29. Wang, X., Ke, L., Qiao, Z., Chai, X.: “Large-scale traffic signal control using a novel multiagent reinforcement learning,“IEEE transactions on cybernetics, (2020)

  30. Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control,. IEEE Comput. Intell. Mag. 5(4), 43–51 (2010)

    Google Scholar 

  31. Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing,. J. Netw. Comput. Appl. 119, 110–120 (2018)

    Article  Google Scholar 

  32. Vergis, S., Komianos, V., Tsoumanis, G., Tsipis, A., Oikonomou, K.: “A Low-Cost Vehicular Traffic Monitoring System Using Fog Computing,“. Smart Cities. 3(1), 138–156 (2020)

    Article  Google Scholar 

  33. Dass, P., Misra, S., Roy, C.: “T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems,“. IEEE Trans. Veh. Technol. 69(9), 9509–9517 (2020)

    Article  Google Scholar 

  34. Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access. 7, 84217–84228 (2019)

    Article  Google Scholar 

  35. Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: A survey,. ACM Comput. Surv. (CSUR). 50(3), 1–43 (2017)

    Article  Google Scholar 

  36. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: “Fog computing and its role in the internet of things,“ in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012)

  37. Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach,. Transp. Res. Part C: Emerg. Technol. 77, 329–350 (2017)

    Article  Google Scholar 

  38. Orcutt, F.L. Jr.: The traffic signal book. (1993)

  39. Papacostas, C.S., Prevedouros, P.D.: Transportation engineering and planning. (1993)

Download references


Authors are thankful to RAC-LAB ( for providing the computer for this study.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Seyit Alperen Celtek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celtek, S.A., Durdu, A. A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing. Int. J. ITS Res. (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Adaptive traffic Signal Control
  • Internet of things
  • Reinforcement learning