Skip to main content

A Data-Driven Approach for Vehicle Relocation in Car-Sharing Services with Balanced Supply-Demand Ratios

Abstract

To reduce the vehicle relocation rate considering relieving disequilibrium of the supply-demand ratios across regions for car-sharing systems, in this paper, we propose a data-driven optimization framework by integrating the non-parametric learning algorithm and two-stage stochastic programming modeling technique to address the one-way station-based car-sharing relocation problem. In contrast with the most existing work that deals with demand uncertainty using predefined probability distributions, the learning-based framework is capable of handling demand uncertainty by learning the intrinsic pattern from large-scale historical data and computing high quality solutions. To validate the performance of our proposed approach, we conduct a group of numerical experiments based on New York taxicab trip record data set. The experimental results show that our proposed data-driven approach outperforms the parametric approaches and deterministic model in terms of business profit, relocation rate, and value of stochastic solution (VSS). Most significantly, compared with the deterministic approach, the vehicle relocation rates are reduced by approximate 80%, 70% and 40% under small fleet size, medium fleet size and large fleet size, respectively. In addition, the VSS of our approach is more than 3 times higher than the one of Poisson distribution by average.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    https://www.car2go.com

  2. 2.

    https://www.wundermobility.com

  3. 3.

    https://www.turo.com

  4. 4.

    https://www.zipcar.com

  5. 5.

    https://www.communauto.com

  6. 6.

    https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, visited April 13th, 2021

  7. 7.

    https://www.gurobi.com/academia/academic-program-and-licenses/, visited April 13th, 2021

  8. 8.

    https://www.zipcar.com/pricing/, visited April 13th, 2021

  9. 9.

    https://www.enterprisecarshare.ca/ca/en/home.html/, visited April 13th, 2021

  10. 10.

    https://www.cbtnews.com/dealers-experts-discuss-inventory-holding-cost-erosion/, visited April 13th, 2021

  11. 11.

    https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page/, visited April 13th, 2021

  12. 12.

    https://data.world/nyc-taxi-limo/taxi-zone-lookup, visited April 13th, 2021

References

  1. 1.

    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization, vol. 28. Princeton University Press (2009)

  2. 2.

    Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. arXiv:1811.06128 (2018)

  3. 3.

    Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Science & Business Media (2011)

  4. 4.

    Boldrini, C., Incaini, R., Bruno, R.: Relocation in Car Sharing Systems with Shared Stackable Vehicles: Modelling Challenges and Outlook. In: 2017 IEEE 20Th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2017)

  5. 5.

    Boyacı, B., Zografos, K.G.: Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems. Transp. Res. B Methodol. 129, 244–272 (2019)

    Article  Google Scholar 

  6. 6.

    Boyacı, B., Zografos, K.G., Geroliminis, N.: An optimization framework for the development of efficient one-way car-sharing systems. Eur. J. Oper. Res. 240(3), 718–733 (2015)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bruglieri, M., Pezzella, F., Pisacane, O.: A two-phase optimization method for a multiobjective vehicle relocation problem in electric carsharing systems. J. Comb. Optim. 36(1), 162–193 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Burghard, U., Dütschke, E.: Who wants shared mobility? lessons from early adopters and mainstream drivers on electric carsharing in germany. Transp. Res. Part D: Transp. Environ. 71, 96–109 (2019)

    Article  Google Scholar 

  9. 9.

    Delage, E., Arroyo, S., Ye, Y.: The value of stochastic modeling in two-stage stochastic programs with cost uncertainty. Oper. Res. 62(6), 1377–1393 (2014)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Deng, Y., Cardin, M.A.: Integrating operational decisions into the planning of one-way vehicle-sharing systems under uncertainty. Transp. Res. Part C: Emerging Technol. 86, 407–424 (2018)

    Article  Google Scholar 

  11. 11.

    Di Febbraro, A., Sacco, N., Saeednia, M.: One-way car-sharing profit maximization by means of user-based vehicle relocation. IEEE Trans. Intell. Transp. Syst. 20(2), 628–641 (2018)

    Article  Google Scholar 

  12. 12.

    Gambella, C., Malaguti, E., Masini, F., Vigo, D.: Optimizing relocation operations in electric car-sharing. Omega 81, 234–245 (2018)

    Article  Google Scholar 

  13. 13.

    Gramacki, A.: Nonparametric kernel density estimation and its computational aspects. Springer (2018)

  14. 14.

    Hua, Y., Zhao, D., Wang, X., Li, X.: Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand. Transp. Res. B Methodol. 128, 185–206 (2019)

    Article  Google Scholar 

  15. 15.

    Huo, X., Wu, X., Li, M., Zheng, N., Yu, G.: The allocation problem of electric car-sharing system: a data-driven approach. Transp. Res. Part D: Transp. Environ. 78, 102192 (2020)

    Article  Google Scholar 

  16. 16.

    Illgen, S., Höck, M.: Literature review of the vehicle relocation problem in one-way car sharing networks. Transp. Res. B Methodol. 120, 193–204 (2019)

    Article  Google Scholar 

  17. 17.

    Kypriadis, D., Pantziou, G., Konstantopoulos, C., Gavalas, D.: Optimizing relocation cost in free-floating car-sharing systems. IEEE Trans. Intell. Transp. Syst. 21(9), 4017–4030 (2020)

    Article  Google Scholar 

  18. 18.

    Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., Lodi, A.: Predicting solution summaries to integer linear programs under imperfect information with machine learning. arXiv:1807.11876 (2018)

  19. 19.

    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  20. 20.

    Lei, Z., Qian, X., Ukkusuri, S.V.: Efficient proactive vehicle relocation for on-demand mobility service with recurrent neural networks. Transp. Res. Part C: Emerging Technol. 117, 102678 (2020)

    Article  Google Scholar 

  21. 21.

    Lempert, R., Zhao, J., Dowlatabadi, H.: Convenience, savings, or lifestyle? distinct motivations and travel patterns of one-way and two-way carsharing members in vancouver, canada. Transp. Res. Part D: Transp. Environ. 71, 141–152 (2019)

    Article  Google Scholar 

  22. 22.

    Mourad, A., Puchinger, J., Chu, C.: A survey of models and algorithms for optimizing shared mobility. Transp. Res. B Methodol. 123, 323–346 (2019)

    Article  Google Scholar 

  23. 23.

    Ning, C., You, F.: Data-driven stochastic robust optimization: General computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era. Comput. Chem. Eng. 111, 115–133 (2018)

    Article  Google Scholar 

  24. 24.

    Nourinejad, M., Zhu, S., Bahrami, S., Roorda, M.J.: Vehicle relocation and staff rebalancing in one-way carsharing systems. Transp. Res. Part E: Logist. Transp. Rev. 81, 98–113 (2015)

    Article  Google Scholar 

  25. 25.

    Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Scott, D.W.: Multivariate density estimation: theory, practice, and visualization. Wiley (2015)

  27. 27.

    Shang, C., You, F.: Distributionally robust optimization for planning and scheduling under uncertainty. Comput. Chem. Eng. 110, 53–68 (2018)

    Article  Google Scholar 

  28. 28.

    Sopjani, L., Stier, J.J., Ritzén, S., Hesselgren, M., Georén, P.: Involving users and user roles in the transition to sustainable mobility systems: The case of light electric vehicle sharing in sweden. Transp. Res. Part D: Transp. Environ. 71, 207–221 (2019)

    Article  Google Scholar 

  29. 29.

    Sprei, F., Habibi, S., Englund, C., Pettersson, S., Voronov, A., Wedlin, J.: Free-floating car-sharing electrification and mode displacement: Travel time and usage patterns from 12 cities in europe and the united states. Transp. Res. Part D: Transp. Environ. 71, 127–140 (2019)

    Article  Google Scholar 

  30. 30.

    Uteng, T.P., Julsrud, T.E., George, C.: The role of life events and context in type of car share uptake: Comparing users of peer-to-peer and cooperative programs in oslo, norway. Transp. Res. Part D: Transp. Environ. 71, 186–206 (2019)

    Article  Google Scholar 

  31. 31.

    Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Vosooghi, R., Puchinger, J., Jankovic, M., Sirin, G.: A Critical Analysis of Travel Demand Estimation for New One-Way Carsharing Systems. In: Proceedings of IEEE 20Th Int. Conf. Intell. Transp. Syst. (ITSC), pp. 199–205. IEEE (2017)

  33. 33.

    Wang, L., Liu, Q., Ma, W.: Optimization of dynamic relocation operations for one-way electric carsharing systems. Transp. Res. Part C: Emerging Technol. 101, 55–69 (2019)

    Article  Google Scholar 

  34. 34.

    Warrington, J., Ruchti, D.: Two-stage stochastic approximation for dynamic rebalancing of shared mobility systems. Transp. Res. Part C: Emerging Technol. 104, 110–134 (2019)

    Article  Google Scholar 

  35. 35.

    Yang, S., Wu, J., Sun, H., Qu, Y., Li, T.: Double-balanced relocation optimization of one-way car-sharing system with real-time requests. Transp. Res. Part C: Emerging Technol. 125, 103071 (2021)

    Article  Google Scholar 

  36. 36.

    Zhang, D., Liu, Y., He, S.: Vehicle assignment and relays for one-way electric car-sharing systems. Transp. Res. B Methodol. 120, 125–146 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gao, J., Wang, C. et al. A Data-Driven Approach for Vehicle Relocation in Car-Sharing Services with Balanced Supply-Demand Ratios. Int. J. ITS Res. (2021). https://doi.org/10.1007/s13177-021-00269-y

Download citation

Keywords

  • Data-driven optimization
  • Two-stage stochastic programming
  • Non-parametric density estimation
  • Car-sharing