Driver Drowsiness Measurement Technologies: Current Research, Market Solutions, and Challenges

  • M. DoudouEmail author
  • A. Bouabdallah
  • V. Berge-Cherfaoui


Significant advances in embedded technologies hold promise to characterize and monitor driver’s state of alertness and detect critical levels of driver drowsiness in real-time. While some enduring solutions have been available as prototypes for a while, many of these technologies are now in the development, validation testing, or even commercialization stages. Several studies have reviewed some available fatigue and/or drowsiness detection solutions. This paper builds on previous studies and aims to provide up-to-date yet complete review on emerging driver drowsiness and alertness monitoring technologies. The contribution of this paper is to identify and review the key objective driver state monitoring technologies namely (i) driving behavioural (vehicle-based), (ii) driver behavioural (video-based), and (iii) driver physiological signals measure based technologies. Each technology is presented with a detailed description of associated detection methods and measuring metrics along with the current research activities and market products in this era. An evaluation of these technologies is also provided in term of intrusiveness, accuracy of detection, and practical use point of view. Therefore, the paper highlights open issues with these emerging systems which need further investigation in the future. We think that this study contribute to a better understanding of sleepiness at the wheel, and will help promote the implementation of accurate crash prevention technologies.


Safety Driver drowsiness Vehicle measurement Video sensors Physiological signals 



This work was part of WISSD Project carried out in Heudiasyc Lab. and was co-funded by the French Regional Program (Hauts-de-France), and the European Regional Development Fund through the program FEDER.


  1. 1.
    Bitalino development kit. (2017)
  2. 2.
    Libelium mysignals development kit. (2017)
  3. 3.
    Shimmer development kit. (2017)
  4. 4.
    Abtahi, S., Hariri, B., Shirmohammadi, S.: Driver drowsiness monitoring based on yawning detection. In: 2011 IEEE International Instrumentation and Measurement Technology Conference, pp 1–4 (2011)Google Scholar
  5. 5.
    Advanced Brain Monitoring, I.: B-alert eeg headset system. (2015)
  6. 6.
    Akerstedt, T., Bassetti, C., Cirignotta, F., Garcia-borreguero, D., Goncalves, M., Horne, J., Leger, D., Partinen, M., Penzel, T., Philip, P., Verster, J.C.: Sleepiness at the wheel. Institut National du Sommeil et de la Vigilance European Sleep Research Society (2013)Google Scholar
  7. 7.
    Akin, M., Kurt, M., Sezgin, M., Bayram, M.: Estimating vigilance level by using eeg and emg signals. Neural Comput. Appl. 17, 227–236 (2008)Google Scholar
  8. 8.
  9. 9.
    Alert, F.D.: Ford’s wake-up call for europe’s sleepy drivers. Volvo Cars. (2010)
  10. 10.
    AntiSleep: Driver alert system. SmartEye (2016)
  11. 11.
    ANTneuro, I.: Eegosports: Ultra-mobile eeg & emg recording platform. (2017)
  12. 12.
    Anund, A., Kecklund, G., Vadeby, A., Hjälmdahl, M., ÅKerstedt, T.: The alerting effect of hitting a rumble strip—a simulator study with sleepy drivers. Accid. Anal. Prev. 40(6), 1970–1976 (2008)Google Scholar
  13. 13.
    Applied Physics, Lab., A.: Drowsy Driver Detection System. Johns Hopkins University, Baltimore (2000).
  14. 14.
    Arnedt, J.T., Wilde, G.J.S., Munt, P.W., MacLean, A.W.: How do prolonged wakefulness and alcohol compare in the decrements they produce on a simulated driving task? Accid. Anal. Prev. 33(3), 337–344 (2001)Google Scholar
  15. 15.
    Artaud, P., Planque, S., Lavergne, C., C!Ara, H., Tarriere, C., Gueguen, B., et al.: An on-board system for detecting lapses of alertness in car driving. In: Proceedings: International Technical Conference on the Enhanced Safety of Vehicles, pp 350–359. National Highway Traffic Safety Administration (1995)Google Scholar
  16. 16.
    Arun, S., Kenneth, S., Murugappan, M.: Drowsiness detection during different times of day using multiple features. Australas. Phys. Eng. Sci. Med. 36(2), 243–250 (2013)Google Scholar
  17. 17.
    Arun, S., Sundaraj, K., Murugappan, M.: Hypovigilance detection using energy of electrocardiogram signals. Accid. Anal. Prev. 12(71), 794–799 (2012)Google Scholar
  18. 18.
    Balasubramanian, V., Adalarasu, K.: Emg-based analysis of change in muscle activity during simulated driving. J. Bodyw. Mov. Ther. 11(2), 151–158 (2007)Google Scholar
  19. 19.
    Barea, R., Boquete, L., Mazo, M., Lopez, E.: System for assisted mobility using eye movements based on electrooculography. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 209–218 (2002)Google Scholar
  20. 20.
    Barr, L., Popkin, S., Howarth, H.: An evaluation of emerging driver fatigue detection measures and technologies. Tech. rep. US department of Transportation (2009)Google Scholar
  21. 21.
    Bekiaris, A.: Sensation project. (2005)
  22. 22.
    Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Lopez, M.E.: Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 7(1), 63–77 (2006)Google Scholar
  23. 23.
    Bhata, V.: No-nap anti sleep alarm. (2010)
  24. 24.
    BioSemi, B.: Activetwo: biopotential measurement system with active electrodes. (2017)
  25. 25.
    Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)Google Scholar
  26. 26.
    Brandt, T., Stemmer, R., Rakotonirainy, A.: Affordable visual driver monitoring system for fatigue and monotony. In: IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), vol. 7, pp 6451–6456 (2004)Google Scholar
  27. 27.
    Brown, T., Johnson, R., Milavetz, C.: Identifying periods of drowsy driving using eeg. Ann. Adv. Automot. Med. 57, 99 (2013)Google Scholar
  28. 28.
    Brown, T., Lee, J., Schwarz, C., Fiorentino, D., McDonald, A.: Assessing the feasibility of vehicle-based sensors to detect drowsy driving. Tech Report, National Advanced Driving Simulator University of Iowa (2014)Google Scholar
  29. 29.
    Brunner, D., Vasko, R., Detka, C., Monahan, J., III, C.R., Kupfer, D.: Muscle artifacts in the sleep eeg: automated detection and effect on all-night eeg power spectra. J. Sleep Res. 5(3), 155–164 (1996)Google Scholar
  30. 30.
    Campagne, A., Pebayle, T., Muzet, A.: Correlation between driving errors and vigilance level: influence of the driver’s age. Physiol. Behav. 80(4), 515–524 (2004)Google Scholar
  31. 31.
    Cao, L., Li, J., Sun, Y., Zhu, H., Yan, C.: Eeg-based vigilance analysis by using fisher score and pca algorithm. In: International Conference on Progress in Informatics and Computing PIC, pp 175–179 (2010)Google Scholar
  32. 32.
    Chen, L.I, Zhao, Y., Zhang, J., Zou, J.Z.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 41(21), 7344–7355 (2015)Google Scholar
  33. 33.
    Chen, Z., Wu, C., Zhong, M., Lyu, N., Huang, Z.: Identification of common features of vehicle motion under drowsy distracted driving: a case study in Wuhan China. Accid. Anal. Prev. 81, 251–259 (2015)Google Scholar
  34. 34.
    Cheng, B., Zhang, W., Lin, Y., Feng, R., Zhang, X.: Driver drowsiness detection based on multisource information. Hum. Factors Ergon. Manuf. Serv. Ind. 22(5), 450–467 (2012)Google Scholar
  35. 35.
    Chieh, T.C., Mustafa, M.M., Hussain, A., Hendi, S.F., Majlis, B.Y.: Development of vehicle driver drowsiness detection system using electrooculogram (eog). In: 1st International Conference on Computers, Communications, Signal Processing with Special Track on Biomedical Engineering, pp 165–168 (2005)Google Scholar
  36. 36.
    Chin, T.L., Che, J.C., Bor, S.L., Shao, H.H., Chih, F.C., Wang, I.J.: A real-time wireless brain-computer interface system for drowsiness detection. IEEE Trans. Biomed. Circ. Syst. 4, 214–222 (2010)Google Scholar
  37. 37.
    Cognionics, I.: Quick-20: wireless dry eeg headset. (2017)
  38. 38.
    Colic, A., Marques, O., Furht, B.: Driver Drowsiness Detection Systems and Solutions, vol. 6. Springer, Berlin (2014)Google Scholar
  39. 39.
    Correa, A.G., Orosco, L., Laciar, E.: Automatic detection of drowsiness in eeg records based on multimodal analysis. Med. Eng. Phys. 36(2), 244–249 (2014)Google Scholar
  40. 40.
    Coxworth, B.: Danish anti sleep pilot systems. In: Gizmag, p 17439 (2011)Google Scholar
  41. 41.
    DADS: Driver alertness detection system. Intercore, Inc. (2017)
  42. 42.
    Damousis, I.G., Tzovaras, D., Strintzis, M.G.: A fuzzy expert system for the early warning of accidents due to driver hypo-vigilance. Pers. Ubiquit. Comput. 13(1), 43–49 (2009)Google Scholar
  43. 43.
    Dasgupta, A., George, A., Happy, S.L., Routray, A., Shanker, T.: An on-board vision based system for drowsiness detection in automotive drivers. Int. J. Adv. Eng. Sci. Appl. Math. 5(2), 94–103 (2013)Google Scholar
  44. 44.
    Dinges, D.F.: An overview of sleepiness and accidents. J. Sleep Res. 4, 4–14 (1995)Google Scholar
  45. 45.
    Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inattention monitoring system for intelligent vehicles: a review. IEEE Trans. Intell. Transp. Syst. 12(2), 596–614 (2011)Google Scholar
  46. 46.
    DÓrazio, T., Leo, M., Guaragnella, C., Distante, A.: A visual approach for driver inattention detection. Pattern Recog. 40, 2341–2355 (2007)zbMATHGoogle Scholar
  47. 47.
    Edenborough, N., Hammoud, R., Harbach, A., Ingold, A., Kisacanin, B., Malawey, P., Newman, T., Scharenbroch, G., Skiver, S., Smith, M., Wilhelm, A., Witt, G., Yoder, E., Zhang, H.: Driver state monitor from delphi. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp 1206–1207 (2005)Google Scholar
  48. 48.
    Edwards, D.J., Sirois, B., Dawson, T., Aguirre, A., Davis, B., Trutschel, U.: Evaluation of fatigue management technologies using weighted feature matrix method. In: Proceedings of the Fourth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp 146–152 (2007)Google Scholar
  49. 49.
    Emotiv, I.: Epoc+ research grade 14 channel mobile eeg. (2017)
  50. 50.
    Erwin, C., Volow, M., Gray, B.: Psychophysiologic Indices of Drowsiness. Tech. rep., SAE Technical Paper (1973)Google Scholar
  51. 51.
    Eskandarian, A., Mortazavi, A.: Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection. In: 2007 IEEE Intelligent Vehicles Symposium, pp 553–559 (2007)Google Scholar
  52. 52.
    Eskandarian, A., Sayed, R., Delaigue, P., Blum, J., Mortazavi, A.: Advanced driver fatigue research. Rep. FMCSA-RRR-07-001 Federal Motor Carrier Safety Administration (2007)Google Scholar
  53. 53.
    EyeAlert: Distracted driving and fatigue sentinels. (2017)
  54. 54.
    EyeSight: EyeSight driver assist technology. Subaru, (2016)
  55. 55.
    FaceLab: eye tracking system. Ekstrem Makina, (2013)
  56. 56.
    Fairclough, S.H., Graham, R.: Impairment of driving performance caused by sleep deprivation or alcohol: a comparative study. Hum. Factors 41(1), 118–128 (1999)Google Scholar
  57. 57.
    Fischer, P.: Wake up call! understanding drowsy driving and what states can do. Governors Highway Safety Association (2016)Google Scholar
  58. 58.
    Flores, M., Armingol, J., de la Escalera, A.: Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions. EURASIP J. Adv. Signal Process. 1, 3 (2010)Google Scholar
  59. 59.
    Flores, M.J., Armingol, J.M., Escalera, A.D.L.: Driver drowsiness detection system under infrared illumination for an intelligent vehicle. IET Intell. Transp. Syst. 5(4), 241–251 (2011)Google Scholar
  60. 60.
    FMI Ltd, G.: Astid advisory system for tired drivers. (2006)
  61. 61.
    FocusBand, I: ifocusband: wearable neurofeedback brain training headband. (2017)
  62. 62.
    Forsman, P.M., Vila, B.J., Short, R.A., Mott, C.G., Dongen, H.P.V.: Efficient driver drowsiness detection at moderate levels of drowsiness. Accid. Anal. Prev. 50, 341–350 (2013)Google Scholar
  63. 63.
    Fu, C.L., Li, W.K., Chun, H.C., Tung, P.S., Chin, T.L.: Generalized eeg-based drowsiness prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circ. Syst. 59, 2044–2055 (2012)MathSciNetGoogle Scholar
  64. 64.
    Fukuda, J., Akutsu, E., Aoki, K.: An estimation of driver’s drowsiness level using interval of steering adjustment for lane keeping. JSAE Rev. 16(2), 197–199 (1995)Google Scholar
  65. 65.
    Furugori, S., Yoshizawa, N., Iname, C., Miura, Y.: Estimation of driver fatigue by pressure distribution on seat in long term driving. Rev. Automot. Eng. 26(1), 053–058 (2005)Google Scholar
  66. 66.
    GmbH, B.P.: Brainvision actichamp eeg recording plateform. (2017)
  67. 67.
    GmbH, R.B.: Bosch driver drowsiness detection. (2015)
  68. 68.
    Golz, M., Sommer, D., Trutschel, U., Sirois, B., Edwards, D.: Evaluation of fatigue monitoring technologies. Somnologie-Schlafforschung und Schlafmedizin 14(3), 187–199 (2010)Google Scholar
  69. 69.
    G.Tec Medical Engineering, G.: G.nautilus: wireless biosignal acquisition system. (2017)
  70. 70.
    Gurudath, N., Riley, H.B.: Drowsy driving detection by eeg analysis using wavelet transform and k-means clustering. Procedia Comput. Sci. 34(1), 400–409 (2014)Google Scholar
  71. 71.
    Häkkänen, H., Summala, H., Partinen, M., Tiihonen, M., Silvo, J.: Blink duration as an indicator of driver sleepiness in professional bus drivers. Sleep 22(6), 798–802 (1999)Google Scholar
  72. 72.
    Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., Dement, W.C.: Quantification of sleepiness: a new approach. Psychophysiology 10(4), 431–436 (1973)Google Scholar
  73. 73.
    Hori, T., Sugita, Y., Koga, E., Shirakawa, S., Inoue, K., Uchida, S., Kuwahara, H., Kousaka, M., Kobayashi, T., Tsuji, Y., Terashima, M., Fukuda, K., Fukuda, N.: Proposed supplements and amendments to ’a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the rechtschaffen & kales (1968) standard. Psychiatry Clin. Neurosci. 55(3), 305–310 (2001)Google Scholar
  74. 74.
    Horne, J.A., Baulk, S.D.: Awareness of sleepiness when driving. Psychophysiology 41(1), 161–165 (2004)Google Scholar
  75. 75.
    Hostens, I., Ramon, H.: Assessment of muscle fatigue in low level monotonous task performance during car driving. J. Electromyogr. Kinesiol. 15(3), 266–274 (2005)Google Scholar
  76. 76.
    Hu, S., Zheng, G.: Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Syst. Appl. 36(4), 7651–7658 (2009)Google Scholar
  77. 77.
    Huggins, J.E., Guger, C., Ziat, M., Zander, T.O., Taylor, D., Tangermann, M., Soria-Frisch, A., Simeral, J., Scherer, R., Rupp, R., Ruffini, G., Robinson, D.K.R., Ramsey, N.F., Nijholt, A., Müller-Putz, G., McFarland, D.J., Mattia, D., Lance, B.J., Kindermans, P.J., Iturrate, I., Herff, C., Gupta, D., Do, A.H., Collinger, J.L., Chavarriaga, R., Chase, S.M., Bleichner, M.G., Batista, A., Anderson, C.W., Aarnoutse, E.J.: Workshops of the sixth international brain–computer interface meeting: brain–computer interfaces past, present, and future. Brain-Comput. Interfaces 4(1-2), 3–36 (2017)Google Scholar
  78. 78.
    Hyoki, K., Shigeta, M., Tsuno, N., Kawamuro, Y., Kinoshita, T.: Quantitative electro-oculography and electroencephalography as indices of alertness. Electroencephalogr. Clin. Neurophysiol. 106(3), 213–219 (1998)Google Scholar
  79. 79.
    Iber, C., Ancoli-Israel, S., Chesson, A., Quan, S.: The aasm manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine (2007)Google Scholar
  80. 80.
    IDMT, F.: Eyetracker Driver Micro-Sleep Alerter. Fraunhofer.
  81. 81.
    IMEC, I.: Eeg headset for emotion detection for wearable health solutions. (2017)
  82. 82.
    Ingre, M., Åkerstedt, T., Peters, B., Anund, A., Kecklund, G.: Subjective sleepiness, simulated driving performance and blink duration: examining individual differences. J. Sleep Res. 15(1), 47–53 (2006)Google Scholar
  83. 83.
  84. 84.
    Interaxon, I.: Muse: immersive meditation wireless eeg device. (2017)
  85. 85.
    Ji, Q., Zhu, Z., Lan, P.: Real-time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans. Veh. Technol. 53(4), 1052–1068 (2004)Google Scholar
  86. 86.
    Johns, M.: Optalert automotive video camera system. (2002)
  87. 87.
    Johns, M.W.: A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6), 540–545 (1991)Google Scholar
  88. 88.
    Kang, H.B.: Various approaches for driver and driving behavior monitoring: a review. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 616–623 (2013)Google Scholar
  89. 89.
    Katsis, C.D., Ntouvas, N.E., Bafas, C.G., Fotiadis, D.I.: Assessment of muscle fatigue during driving using surface emg. In: Inproceedings of the IASTED International Conference on Biomedical Engineering, vol. 262, pp 1–4 (2004)Google Scholar
  90. 90.
    Khushaba, R.N., Kodagoda, S., Lal, S., Dissanayake, G.: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58(1), 121–131 (2011)Google Scholar
  91. 91.
    Kickstarter, I.: Steer: wearable device that will not let you fall asleep. (2018)
  92. 92.
    Krajewski, J., Sommer, D., Trutschel, U., Edwards, D., Golz, M.: Steering wheel behavior based estimation of fatigue. In: Proc. 5Th Int. Driving Symp. Human Factors Driver Assessment, pp 118–124 (2009)Google Scholar
  93. 93.
    Kurt, M.B., Sezgin, N., Akin, M., Kirbas, G., Bayram, M.: The ann-based computing of drowsy level. Expert Systems with Applications 36(2, Part 1), 2534–2542 (2009)Google Scholar
  94. 94.
    Lal, S.K.L., Craig, A.: A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 55(3), 173–194 (2001)Google Scholar
  95. 95.
    Lawoyin, S.: Novel Technologies for the Detection and Mitigation of Drowsy Driving. Ph.D. thesis, Virginia Commonwealth University (2014)Google Scholar
  96. 96.
    Lee, B.G., Lee, B.L., Chung, W.Y.: Mobile healthcare for automatic driving sleep-onset detection using wavelet-based eeg and respiration signals. Sensors 14(10), 17915–17936 (2014)Google Scholar
  97. 97.
    Lee, B.G., Park, J.H., Pu, C.C., Chung, W.Y.: Mobile-based kernel-fuzzy-c-means-wavelet for driver fatigue prediction with cloud computing. In: IEEE SENSORS Proceedings, pp 1236–1239 (2014)Google Scholar
  98. 98.
    Lee, S., Shin, Y., Woo, S., Kim, K., Lee, H.N.: Review of wireless brain-computer interface systems. In: Brain-Computer Interface Systems-Recent Progress and Future Prospects, pp 215–238. Intech (2013)Google Scholar
  99. 99.
    Lew, M., Sebe, N., Huang, T., Bakker, E., Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J.: Drowsy driver detection through facial movement analysis. In: Human-Computer Interaction, vol. 4796, pp 6–18. Springer, Berlin (2007)Google Scholar
  100. 100.
    Lexus, A.: Pre-collision system with driver attention monitor. (2010)
  101. 101.
    Li, G., Chung, W.Y.: Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors 13(12), 16494–16511 (2013)Google Scholar
  102. 102.
    Li, W., He, Q.C., Fan, X.M., Fei, Z.M.: Evaluation of driver fatigue on two channels of eeg data. Neurosci. Lett. 506(2), 235–239 (2012)Google Scholar
  103. 103.
    Liang, W.C., Yuan, J., Sun, D.C., Lin, M.H.: Changes in physiological parameters induced by indoor simulated driving: effect of lower body exercise at mid-term break. Sensors 9(9), 6913–6933 (2009)Google Scholar
  104. 104.
    Liao, L.D., Lin, C.T., McDowell, K., Wickenden, A.E., Gramann, K., Jung, T.P., Ko, L., Chang, J.Y.: Biosensor technologies for augmented brain–computer interfaces in the next decades. Proc. IEEE 100(Special Centennial Issue), 1553–1566 (2012)Google Scholar
  105. 105.
    Lin, C.T., Chen, Y.C., Huang, T.Y., Chiu, T.T., Ko, L.W., Liang, S.F., Hsieh, H.Y., Hsu, S.H., Duann, J.R.: Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver’s drowsiness detection and warning. IEEE Trans. Biomed. Eng. 55(5), 1582–2008 (2008)Google Scholar
  106. 106.
    Lin, C.T., Huang, K.C., Chuang, C.H., Ko, L.W., Jung, T.P.: Can arousing feedback rectify lapses in driving? prediction from eeg power spectra. J. Neural Eng. 10(5), 024–056 (2013)Google Scholar
  107. 107.
    Lin, C.T., Ko, L., Chung, I.F., Huang, T.Y., Chen, Y.C., Jung, T.P., Liang, S.F.: Adaptive eeg-based alertness estimation system by using ica-based fuzzy neural networks. IEEE Trans. Circuits Syst. 53(11), 2469–2476 (2006)Google Scholar
  108. 108.
    Lin, F.C., Ko, L.W., Chuang, C.H., Su, T.P., Lin, C.T.: Generalized eeg-based drowsiness prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circuits Syst. 59(9), 2044–2055 (2012)MathSciNetGoogle Scholar
  109. 109.
    Liu, C.C., Hosking, S.G., Lenné, M.G.: Predicting driver drowsiness using vehicle measures: recent insights and future challenges. J. Safety Res. 40(4), 239–245 (2009)Google Scholar
  110. 110.
    Liu, C.C., Hosking, S.G., Lenné, M.G.: Predicting driver drowsiness using vehicle measures: recent insights and future challenges. J. Safety Res. 40(4), 239–245 (2009)Google Scholar
  111. 111.
    Liu, D., Sun, P., Xiao, Y., Yin, Y.: Drowsiness detection based on eyelid movement. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 2, pp 49–52 (2010)Google Scholar
  112. 112.
    Liu, J., Zhang, C., Zheng, C.: Eeg-based estimation of mental fatigue by using kpca-hmm and complexity parameters. Biomed. Signal. Process. Contr. 5, 124–130 (2010)Google Scholar
  113. 113.
    Liu, N.H., Chiang, C.Y., Hsu, H.M.: Improving driver alertness through music selection using a mobile eeg to detect brainwaves. Sensors 13(7), 8199–8221 (2013)Google Scholar
  114. 114.
    Mardi, Z., Ashtiani, S.N., Mikaili, M.: Eeg-based drowsiness detection for safe driving using chaotic features and statistical tests. J. Med. Signals Sens. 1(2), 130–137 (2011)Google Scholar
  115. 115.
    mBrainTrain, L.: Smarting: small simple and mobile eeg device. (2017)
  116. 116.
    McKernon, S.: A Literature Review on Driver Fatigue among Drivers in the General Public. Tech. rep., Land Transport New Zealand (2009)Google Scholar
  117. 117.
    MindMedia, N.: Nexus-4: entry-level system for biofeedback and neurofeedback. (2017)
  118. 118.
    Mittal, A., Kumar, K., Dhamija, S., Kaur, M.: Head movement-based driver drowsiness detection: a review of state-of-art techniques. In: IEEE International Conference on Engineering and Technology (ICETECH), pp 903–908 (2016)Google Scholar
  119. 119.
    Miyaji, M., Kawanaka, H., Oguri, K.: Driver’s cognitive distraction detection using physiological features by the Adaboost. In: IEEE Conference on Intelligent Transportation Systems, ITSC, pp 90–95 (2009)Google Scholar
  120. 120.
    Monk, T.H.: A visual analogue scale technique to measure global vigor and affect. Psychiatry Res. 27(1), 89–99 (1989)Google Scholar
  121. 121.
    Morales, J.M., Stasi, L.L.D., Díaz-Piedra, C., Morillas, C., Romero, S.: Real-time monitoring of biomedical signals to improve road safety. In: International Work-Conference on Artificial Neural Networks, Pp. 89–97. Springer (2015)Google Scholar
  122. 122.
    Morris, D.M., Pilcher, J.J., III, F.S.S.: Lane heading difference an innovative model for drowsy driving detection using retrospective analysis around curves. Accid. Anal. Prev. 80, 117–124 (2015)Google Scholar
  123. 123.
    Murugappan, M., Wali, M.K., Ahmmad, R.B., Murugappan, S.: Subtractive fuzzy classifier based driver drowsiness levels classification using eeg. In: International Conference on Communications and Signal Processing (ICCSP), pp 159–164. IEEE (2013)Google Scholar
  124. 124.
    M.V.: Driver alertness detection system. Volvo Cars. (2017)
  125. 125.
    Neurocom, I.: Vigiton: driver vigilance telemetric control system. (2013)
  126. 126.
    Neurocom, J.: Driver vigilance telemetric control system (dvtcs). (2008)
  127. 127.
    Neuroelectrics, N.: Enobio: wearable, wireless electrophysiology sensor system for the recording of eeg. (2017)
  128. 128.
    NeuroScan, C.: Curry scan nuamps express for eeg and erp recording.
  129. 129.
    NeuroScan, C.: Quik-cap electrode system.
  130. 130.
    NeuroSky, I.: Mindwave: mobile 2 eeg brainwave sensing headset.
  131. 131.
    NeuroTherapeutics, I.: Versus: neuroperfomance assessment wireless eeg headset.
  132. 132.
    Olimex, L.: Openeeg: open source hardware board. (2017)
  133. 133.
    OpenBCI, I.: Open source biosensing tools. (2017)
  134. 134.
    Osram Opto Semiconductors, S.: Siemens infrared light-emitting diode (ir-led) for driver microsleep recognition. (2010)
  135. 135.
    Otmani, S., Pebayle, T., Roge, J., Muzet, A.: Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers. Physiol. Behav. 84(5), 715–724 (2005)Google Scholar
  136. 136.
    Papadelis, C., Chen, Z., Kourtidou-Papadeli, C., Bamidis, P.D., Chouvarda, I., Bekiaris, E., Maglaveras, N.: Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin. Neurophysiol. 118(9), 1906–1922 (2007)Google Scholar
  137. 137.
    Patel, M., Lal, S., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 38(6), 7235–7242 (2011)Google Scholar
  138. 138.
    Peng, Y., Boyle, L.N., Hallmark, S.L.: Driver’s lane keeping ability with eyes off road: insights from a naturalistic study. Accid. Anal. Prev. 50, 628–634 (2013)Google Scholar
  139. 139.
    Peters, R.D., Wagner, E.K., Alicandri, E., Fox, J.E., Thomas, M.L., Thorne, D.R., Sing, H.C., Balwinski, S.M.: Effects of partial and total sleep deprivation on driving performance. Public Roads 62(4) (1999)Google Scholar
  140. 140.
    Philip, P., Sagaspe, P., Moore, N., Taillard, J., Charles, A., Guilleminault, C., Bioulac, B.: Fatigue, sleep restriction and driving performance. Accid. Anal. Prev. 37(3), 473–478 (2005)Google Scholar
  141. 141.
    Picot, A., Charbonnier, S., Caplier, A.: Drowsiness detection based on visual signs: blinking analysis based on high frame rate video. In: 2010 IEEE Instrumentation Measurement Technology Conference Proceedings, pp 801–804 (2010)Google Scholar
  142. 142.
    Pratt, R.: Cognex’s safetrac in-vehicle safety system. (2007)
  143. 143.
    Pratt, R.: Iteris safety direct and lane departure warning (ldw) system. (2007)
  144. 144.
    QUSAR Sensing, I.: Dsi 10-20: wireless headset sensor interface. (2016)
  145. 145.
    Rosipal, R., Lewandowski, A., Dorffner, G.: In search of objective components for sleep quality indexing in normal sleep. Biol. Psychol. 94(1), 210–220 (2013)Google Scholar
  146. 146.
    ROSPA: Driver fatigue and road accidents: a literature review and position paper. Technical report, The Royal Society for the prevention of accidents, Birmingham U.K (2001)Google Scholar
  147. 147.
    Royal, D., Street, F., Suite, N.W.: National Survey of Distracted and Drowsy Driving Attitudes and Behavior. Technical report, National Highway Traffic Safety Administration (2002)Google Scholar
  148. 148.
    Sahayadhas, A., Sundaraj, K., Murugappan, M.: Detecting driver drowsiness based on sensors: a review. Sensors 12(12), 16937–16953 (2012)Google Scholar
  149. 149.
    Sanjaya, K., Lee, S., Katsuura, T.: Review on the application of physiological and biomechanical measurement methods in driving fatigue detection. Journal of Mechatronics, Electrical Power and Vehicular Technology 7(1) (2016)Google Scholar
  150. 150.
    Sayed, R., Eskandarian, A., Oskard, M.: Driver drowsiness detection using artificial neural networks. In: Transportation Research Board 80Th Annual Meeting, pp 1–13 (2001)Google Scholar
  151. 151.
    Shen, K.Q., Li, X.P., Ong, C.J., Shao, S.Y., Wilder-Smith, E.P.V.: Eeg-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin. Neurophysiol. 119(7), 1524–1533 (2008)Google Scholar
  152. 152.
    Shen, W., Sun, H., Cheng, E., Zhu, Q., Li, Q.: Effective driver fatigue monitoring through pupil detection and yawing analysis in low light level environments. Int. J. Digit. Technol. Appl 6, 372–383 (2012)Google Scholar
  153. 153.
    Shin, H.S., Jung, S.J., Kim, J.J., Chung, W.Y.: Real time car driver’s condition monitoring system. In: IEEE Sensors, pp 951–954 (2010)Google Scholar
  154. 154.
    Sigari, M.H., Pourshahabi, M.R., Soryani, M., Fathy, M.: A review on driver face monitoring systems for fatigue and distraction detection. Int. J. Adv. Sci. Technol. 64(1), 73–100 (2014)Google Scholar
  155. 155.
    Slobinsky, N.: Mobileye vision-based driver assistance systems. (2009)
  156. 156.
    S.N.: Saab Driver Attention Warning System. Saabnetwork
  157. 157.
    StopSleep, I.: Sleepiness prevention ring. (2017)
  158. 158.
    Subasi, A.: Automatic recognition of alertness level from eeg by using neural network and wavelet coefficients. Expert Syst. Appl. 28(4), 701–711 (2005)Google Scholar
  159. 159.
    Tansakul, W., Tangamchi, P.: Fatigue driver detection system using a combination of blinking rate and driving inactivity. Jounal of Automation and Control Engineering 4(1), 33–39 (2016)Google Scholar
  160. 160.
    Taylor, M.: No doze: Mercedes e-class alerts drowsy drivers. Autoweek Daily Drive, December 24 (2008)Google Scholar
  161. 161.
    Tefft, B.C.: Asleep at the wheel: the prevalence and impact of drowsy driving. Technical Report, American Automobile Association Foundation for Traffic Safety (2010)Google Scholar
  162. 162.
    Thiffault, P., Bergeron, J.: Monotony of road environment and driver fatigue: a simulator study. Accid. Anal. Prev. 35(3), 381–391 (2003)Google Scholar
  163. 163.
    Tsuchida, A., Bhuiyan, M.S., Oguri, K.: Estimation of drowsiness level based on eyelid closure and heart rate variability. In: 31St Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC, pp 2543–2546 (2009)Google Scholar
  164. 164.
    Volkswagen: Driver Alert System. Volkswagen Driver Assistance Experience, (2016)
  165. 165.
    Volow, M., Erwin, C.: The Heart Rate Variability Correlates of Spontaneous Drowsiness Onset, Tech. rep., SAE Technical Paper (1973)Google Scholar
  166. 166.
    Vuckovic, A., Radivojevic, V., Chen, A.C.N., Popovic, D.: Automatic recognition of alertness and drowsiness from eeg by an artificial neural network. Med. Eng. Phys. 24(5), 349–360 (2002)Google Scholar
  167. 167.
    Vural, E.: Video based detection of driver fatigue. Ph.D. Thesis. Sabanci University. Istanbul Turkey (2009)Google Scholar
  168. 168.
    Wang, L., Wu, X., Ba, B., Dong, W.: A vision-based method to detect perclos features. Comput. Eng. Sci. 6, 0–17 (2006)Google Scholar
  169. 169.
    Xia, Q., Song, Y., Zhu, X.: The research development on driving fatigue based on perclos. Tech. Autom. Appl. 6, 0–13 (2008)Google Scholar
  170. 170.
    Xiao, F., Bao, C.Y., Yan, F.S.: Yawning detection based on gabor wavelets and lda. J. Beijing Univ. Technol 35, 409–413 (2009)Google Scholar
  171. 171.
    Yang, G., Lin, Y., Bhattacharya, P.: A driver fatigue recognition model based on information fusion and dynamic bayesian network. Inform. Sci. 180(10), 1942–1954 (2010)Google Scholar
  172. 172.
    Yeo, M.V.M., Li, X., Shen, K., Wilder-Smith, E.P.V.: Can svm be used for automatic eeg detection of drowsiness during car driving? safety science. Med. Eng. Phys. 47(1), 115–124 (2009)Google Scholar
  173. 173.
    Yin, B.C., Fan, X., Sun, Y.F.: Multiscale dynamic features based driver fatigue detection. Int. J. Pattern Recogn. Artif. Intell. 23, 575–589 (2009)Google Scholar
  174. 174.
    Young, L.R., Sheena, D.: Eye-movement measurement techniques. Am. Psychol. 30(3), 315 (1975)Google Scholar
  175. 175.
    Zhang, C., Wang, H., Fu, R.: Automated detection of driver fatigue based on entropy and complexity measures. IEEE Trans. Intell. Transp. Syst. 15(1), 168–177 (2014)Google Scholar
  176. 176.
    Zhang, C., Zheng, C.X., Yu, X.L.: Automatic recognition of cognitive fatigue from physiological indices by using wavelet packet transform and kernel learning algorithms. Expert Syst. Appl. 36(3), 4664–4671 (2009)Google Scholar
  177. 177.
    Zhang, Z., Zhang, J.: A new real-time eye tracking based on nonlinear unscented kalman filter for monitoring driver fatigue. J. Contr. Theor. Appl. 8, 181–188 (2008)Google Scholar
  178. 178.
    Zhao, C., Zheng, C., Zhao, M., Liu, J., Tu, Y.: Automatic classification of driving mental fatigue with eeg by wavelet packet energy and kpca-svm. International Journal of Innovative Computing Information and Control 7(3), 1157–1168 (2011)Google Scholar
  179. 179.
    Zilberg, E., Xu, Z.M., Burton, D., Karrar, M., Lal, S.: Methodology and initial analysis results for development of non-invasive and hybrid driver drowsiness detection systems. In: The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications, Auswireless, pp 16–16. IEEE (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS Heudiasyc, LaboratoryUniversité de technologie de Compiègne, Sorbonne UniversitésCompiègneFrance

Personalised recommendations