Advertisement

Performance Evaluation of Spatial Correlation-based Feature Detection and Matching for Automated Wheelchair Navigation System

  • Wan Mohd Yaakob Wan BejuriEmail author
  • Mohd Murtadha Mohamad
  • Maimunah Sapri
  • Mohd Shafry Mohd Rahim
  • Junaid Ahsenali Chaudry
Article

Abstract

A wheelchair navigation system have emerged in response to high demand for mobile location-aware applications. Nevertheless, single localization technology have several limitations and vulnerabilities; to provide a universal localization solution for various environment. In this paper, we present our new new feature detection and matching algorithm approach for automated wheelchair navigation system. This kind approach is using multi localization solution, which are; Wireless LAN and camera. Thus, these location information are combined by model fitting in order to find the absolute of user target position. As a finding, our experimental results indicate positioning accuracy of 0–6 m with a 23 % trial by given five (5) different locations.

Keywords

Wireless LAN Indoor localization Mobile Received signal strength 

Notes

Acknowledgement

This work has been funded by the Research University Grant (RUG) under project no. Q.130000.2628.08J05

References

  1. 1.
    R. Ivanov, “RSNAVI: an RFID-based context-aware indoor navigation system for the blind,” in Proceedings of the 13th International Conference on Computer Systems and Technologies, New York, NY, USA, 2012, pp. 313–320.Google Scholar
  2. 2.
    Esposito, C., Ficco, M.: Deployment of RSS-based indoor positioning systems. Int. J. Wirel. Inf. Networks 18(4), 224–242 (2011)CrossRefGoogle Scholar
  3. 3.
    Lee, B.-G., Chung, W.-Y.: Multitarget three-dimensional indoor navigation on a PDA in a wireless sensor network. Ieee Sensors J. 11(3), 799–807 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Liao, L., Lin, K., Wang, X., Lai, X., Vuong, S.T.: WiFi positioning overview. Int. J. Commun. Networks Distrib. Syst. 7(3), 229–248 (2011)CrossRefGoogle Scholar
  5. 5.
    Giorgetti, G., Farley, R., Chikkappa, K., Ellis, J., Kaleas, T.: Cortina: collaborative indoor positioning using low-power sensor networks. J. Locat. Based Serv. 6(3), 137–160 (2012)CrossRefGoogle Scholar
  6. 6.
    C.-P. Yen and P. J. Voltz, “Indoor positioning based on statistical multipath channel modeling,” Eurasip J. Wirel. Commun. Netw., vol. 2011, no. 1, p. 189, 2011.Google Scholar
  7. 7.
    Lu, M.: A framework for indoor construction resources tracking by applying wireless sensor networks. Can. J. Civ. Eng. 39(9), 1083–1088 (2012)CrossRefGoogle Scholar
  8. 8.
    Shen, X., Lu, M.: A framework for indoor construction resources tracking by applying wireless sensor networks 1 1 This paper is one of a selection of papers in this Special Issue on Construction Engineering and Management. Can. J. Civ. Eng. 39(9), 1083–1088 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Nicoli, S. Gezici, Z. Sahinoglu, and H. Wymeersch, “Localization in mobile wireless and sensor networks,” Eurasip J. Wirel. Commun. Netw., vol. 2011, no. 1, p. 197, 2011.Google Scholar
  10. 10.
    C. Mensing, S. Sand, and A. Dammann, “Hybrid data fusion and tracking for positioning with GNSS and 3GPP-LTE,” Int. J. Navig. Obs., vol. 2010, 2010.Google Scholar
  11. 11.
    Liew, S.C., Tan, K.G., Tan, C.P.: Non-Taylor series based positioning method for hybrid GPS/Cellphone system. J. Electromagn. Waves Appl. 20(6), 717–729 (2006)CrossRefGoogle Scholar
  12. 12.
    Liew, S.C., Tan, K.G., Lim, T.S.: Investigation of direct A-GPS positioning for hybrid E-OTD/GNSS. J. Electromagn. Waves Appl. 20(1), 79–87 (2006)CrossRefGoogle Scholar
  13. 13.
    Yang, H., Park, K., Lee, J.G., Chung, H.: A rotating sonar and a differential encoder data fusion for map-based dynamic positioning. J Intell Robot. Syst 29(3), 211–232 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shoval, S., Zeitoun, I., Lenz, E.: Implementation of a Kalman filter in positioning for autonomous vehicles, and its sensitivity to the process parameters. Int. J. Adv. Manuf. Technol. 13(10), 738–746 (1997)CrossRefGoogle Scholar
  15. 15.
    Yost, M.G., Gadgil, A.J., Drescher, A.C., Zhou, Y., Simonds, M.A., Levine, S.P., Nazaroff, W.W., Saisan, P.A.: Imaging indoor tracer-gas concentrations with computed tomography: experimental results with a remote sensing FTIR system. Am. Ind. Hyg. Assoc. J. 55(5), 395–402 (1994)CrossRefGoogle Scholar
  16. 16.
    Cao, Z.L., Oh, S.J., Hall, E.L.: Dynamic omnidirectional vision for mobile robots. J. Robot. Syst. 3(1), 5–17 (1986)CrossRefGoogle Scholar
  17. 17.
    A. Kosaka and J. Pan, “Purdue Experiments in Model-Based Vision for Hallway Navigation,” in In Proceedings of the Workshop on Vision for Robots in IROS’95, 1995, pp. 87–96.Google Scholar
  18. 18.
    N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich, “The vSLAM Algorithm for Robust Localization and Mapping,” in Proceedings of the 2005 I.E. International Conference on Robotics and Automation, 2005. ICRA 2005, 2005, pp. 24–29.Google Scholar
  19. 19.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. Acm Trans Graph 25(3), 835–846 (2006)CrossRefGoogle Scholar
  20. 20.
    Hile, H., Borriello, G.: Positioning and orientation in indoor environments using camera phones. Ieee Comput. Graph. Appl. 28(4), 32–39 (2008)CrossRefGoogle Scholar
  21. 21.
    T. Ruiz-López, J. L. Garrido, K. Benghazi, and L. Chung, “A Survey on Indoor Positioning Systems: Foreseeing a Quality Design,” in Distributed Computing and Artificial Intelligence, vol. 79, A. P. Leon F. de Carvalho, S. Rodríguez-González, J. F. Paz Santana, and J. M. C. Rodríguez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 373–380.Google Scholar
  22. 22.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M., Rosly, M.A.: Investigation of color constancy for ubiquitous wireless LAN/Camera positioning: an initial outcome. Int. J. Adv. Comput. Technol. 4(7), 269–280 (2012)CrossRefGoogle Scholar
  23. 23.
    Bejuri, W.M.Y.W., Mohamad, M.M., Sapri, M.: Ubiquitous positioning: a taxonomy for location determination on mobile navigation system. Signal Image Process. Int. J. 2(1), 24–34 (2011)CrossRefGoogle Scholar
  24. 24.
    W. M. Y. W. Bejuri, M. M. Mohamad, M. Sapri, and M. A. Rosly, “Ubiquitous WLAN/Camera Positioning using Inverse Intensity Chromaticity Space-based Feature Detection and Matching: A Preliminary Result,” in International Conference on Man–machine Systems 2012, Penang, Malaysia.Google Scholar
  25. 25.
    A. Chakrabarti, K. Hirakawa, and T. Zickler, “Computational color constancy with spatial correlations,” Harv. Sch. Eng. Appl. Sci. Tr-09-10, 2010.Google Scholar
  26. 26.
    P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system,” in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2000, vol. 2, pp. 775–784.Google Scholar
  27. 27.
    D. Wettschereck, T. G. Dietterich, and R. Sutton, “An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms,” in Machine Learning, 1995, pp. 5–28.Google Scholar
  28. 28.
    D. Comaniciu and P. Meer, “Mean shift analysis and applications,” in The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, 1999, vol. 2, pp. 1197–1203 vol.2.Google Scholar
  29. 29.
    D. S. Guru, R. Dinesh, and P. Nagabhushan, “Boundary based corner detection and localization using new ‘cornerity’ index: a robust approach,” in First Canadian Conference on Computer and Robot Vision, 2004. Proceedings, 2004, pp. 417–423.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wan Mohd Yaakob Wan Bejuri
    • 1
    Email author
  • Mohd Murtadha Mohamad
    • 1
  • Maimunah Sapri
    • 2
  • Mohd Shafry Mohd Rahim
    • 1
  • Junaid Ahsenali Chaudry
    • 3
  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Centre of Real Estate StudiesUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Department of Computer Science and EngineeringQatar UniversityDohaQatar

Personalised recommendations