Skip to main content

Complete and Complete f -Moment Convergence for Arrays of Rowwise END Random Variables and Some Applications

Abstract

In this paper, complete convergence and complete f -moment convergence for arrays of rowwise Extended Negatively Dependent (END, in short) random variables are investigated, and some sufficient conditions for the convergence are provided. The results obtained improved the corresponding ones for random variables with independence structure and some dependence structures.

This is a preview of subscription content, access via your institution.

Data Availability

Not applicable

References

  • Chow, Y.S. (1988). On the rate of moment convergence of sample sums and extremes. Bull. Institute Math. 16, 177–201.

    MathSciNet  MATH  Google Scholar 

  • Hsu, P.L. and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA 33, 25–31.

    MathSciNet  Article  Google Scholar 

  • Hu, T.C., Rosalsky, A. and Wang, K.L. (2015). Complete convergence theorems for extended negatively dependent random variables. Sankhya A 77, 1–29.

    MathSciNet  Article  Google Scholar 

  • Lita da Silva, J. (2015). Limiting behaviour for arrays of upper extended negatively dependent random variables. Bull. Aust. Math. Soc. 92, 159–167.

    MathSciNet  Article  Google Scholar 

  • Lita da Silva, J. (2016a). Convergence in p-mean for arrays of row-wise extended negatively dependent random variables. Acta Math. Hungar. 150, 346–362.

    MathSciNet  Article  Google Scholar 

  • Lita da Silva, J. (2016b). Limiting behaviour for arrays of row-wise upper extended negatively dependent random variables. Acta Math. Hungar. 148, 481–492.

    MathSciNet  Article  Google Scholar 

  • Lita da Silva, J. (2020). Strong laws of large numbers for arrays of row-wise extended negatively dependent random variables with applications. J. Nonparametr. Stat. 32, 20–41.

    MathSciNet  Article  Google Scholar 

  • Liu, L. (2009). Precise large deviations for dependent random variables with heavy tails. Statist. Probab. Lett. 79, 1290–1298.

    MathSciNet  Article  Google Scholar 

  • Qiu, D.H., Chen, P.Y., Antonini, R.G. and Volodin, A. (2013). On the complete convergence for arrays of Rowwise extended negatively dependent random variables. J. Korean Math. Soc. 50, 379–392.

    MathSciNet  Article  Google Scholar 

  • Wang, K.Y., Wang, Y.B. and Gao, Q.W. (2013a). Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate. Methodol. Comput. Appl. Probab. 15, 109–124.

    MathSciNet  Article  Google Scholar 

  • Wang, X.J., Wang, S.J., Hu, S.H., Ling, J.M. and Wei, Y.F. (2013b). On complete convergence of weighted sums for arrays of rowwise extended negatively dependent random variables. Stochastics 85, 1060–1072.

    MathSciNet  Article  Google Scholar 

  • Wu, Y.F., Cabrera, M.O. and Volodin, A. (2014). Complete convergence and complete moment convergence for arrays of rowwise END random variables. Glasnik Matematicki 49, 447–466.

    MathSciNet  Article  Google Scholar 

  • Wu, Y., Wang, X.J. and Hu, T.C. (2019). Complete f -moment convergence for extended negatively dependent random variables. RACSAM 113, 333–351.

    MathSciNet  Article  Google Scholar 

  • Xu, X. and Yan, J.G. (2021). Complete moment convergence for randomly weighted sums of END sequences and its applications. Commun. Statist. Theory Methods 50, 2877–2899.

    MathSciNet  Article  Google Scholar 

  • Yan, J.G. (2017). Strong stability of a type of Jamison weighted sums for END random variables. J. Korean Math. Soc. 54, 897–907.

    MathSciNet  Article  Google Scholar 

  • Yan, J.G. (2018a). Almost sure convergence for weighted sums of WNOD random variables and its applications in nonparametric regression models. Commun. Statist. Theory Methods 47, 3893–3909.

    Article  Google Scholar 

  • Yan, J.G. (2018b). Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables. Acta Math Sinica English Series 34, 1501–1516.

    MathSciNet  Article  Google Scholar 

  • Yan, J.G. (2019). Complete convergence in Marcinkiewicz-Zygmund type SLLN for END random variables and its applications. Commun. Statist. Theory Methods 48, 5074–5098.

    MathSciNet  Article  Google Scholar 

  • Zhang, L.L., Xu, C., Huang, X.F. and Wang, X.J. (2014). On the strong rates of convergence for arrays of Rowwise extended negatively dependent random variables. Chin. Quart. J. Math. 29, 592–601.

    MATH  Google Scholar 

Download references

Funding

This research was partially supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Gao Yan.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interests.

Additional information

Code availability

Not applicable

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (No. 11571250)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J.Y., Yan, J.G. & Du, F. Complete and Complete f -Moment Convergence for Arrays of Rowwise END Random Variables and Some Applications. Sankhya A (2022). https://doi.org/10.1007/s13171-022-00289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13171-022-00289-0

Keywords and phrases

  • Complete convergence
  • complete f -moment convergence
  • rowwise END array

AMS (2000) subject classification

  • Primary 60F15: Secondary 62G20