Aguilar, V., Ehrenpreis, L. and Kuchment, P. (1996). Range conditions for the exponential Radon transform. J. Anal. Math. 68, 1–13. https://doi.org/10.1007/BF02790201.
MathSciNet
Article
Google Scholar
Bal, G. and Moireau, P. (2004). Fast numerical inversion of the attenuated Radon transform with full and partial measurements. Inverse Problems 20, 4, 1137–1164. https://doi.org/10.1088/0266-5611/20/4/009.
MathSciNet
Article
Google Scholar
Boman, J. and Strömberg, J.-O. (2004). Novikov’s inversion formula for the attenuated Radon transform—a new approach. J. Geom. Anal. 14, 2, 185–198. https://doi.org/10.1007/BF02922067.
MathSciNet
Article
Google Scholar
Cavalier, L. (1998). Asymptotically efficient estimation in a problem related to tomography. Math. Methods Statist. 7, 4, 445–4561999.
MathSciNet
MATH
Google Scholar
Cavalier, L. (2000). Efficient estimation of a density in a problem of tomography. Ann. Statist. 28, 2, 630–647. https://doi.org/10.1214/aos/1016218233.
MathSciNet
Article
Google Scholar
Guillement, J. -P., Jauberteau, F., Kunyansky, L., Novikov, R. and Trebossen, R. (2002). On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction. Inverse Problems 18, 6, 11–19. https://doi.org/10.1088/0266-5611/18/6/101.
MathSciNet
Article
Google Scholar
Hahn, M. G. and Quinto, E. T. (1985). Distances between measures from 1-dimensional projections as implied by continuity of the inverse Radon transform. Z. Wahrsch. Verw. Gebiete 70, 3, 361–380. https://doi.org/10.1007/BF00534869.
MathSciNet
Article
Google Scholar
Hazou, I. A. and Solmon, D. C. (1989). Filtered-backprojection and the exponential Radon transform. J. Math. Anal. Appl. 141, 1, 109–119. https://doi.org/10.1016/0022-247X(89)90209-6.
MathSciNet
Article
Google Scholar
Holman, S, Monard, F and Stefanov, P (2018). The attenuated geodesic x-ray transform. Inverse Problems 34, 6, 064003–26. https://doi.org/10.1088/1361-6420/aab8bc.
MathSciNet
Article
Google Scholar
Johnstone, I. M. and Silverman, B. W. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18, 1, 251–280. https://doi.org/10.1214/aos/1176347500.
MathSciNet
Article
Google Scholar
Korostelëv, A. P. and Tsybakov, A. B. (1991). Optimal rates of convergence of estimators in a probabilistic setup of tomography problem. Probl. Inf. Transm. 27, 73–81.
MATH
Google Scholar
Korostelëv, A.P. and Tsybakov, A.B. (1992). Asymptotically minimax image reconstruction problems. In: Topics in nonparametric estimation. Adv. Soviet math., vol. 12, pp. 45–86. Amer. Math. Soc., providence, RI, ???.
Korostelëv, A.P. and Tsybakov, A. B. (1993). Minimax Theory of Image Reconstruction. Lecture Notes in Statistics, vol. 82, p. 258. Springer ???. doi: https://doi.org/10.1007/978-1-4612-2712-0
Louis, A. K. (1982). Optimal sampling in nuclear magnetic resonance (NMR) tomography. J. Comput. Assist. Tomogr. 6, 2, 334–340. doi: https://doi.org/10.1097/00004728-198204000-00019
Article
Google Scholar
Louis, A. K. (1995). Approximate inverse for linear and some nonlinear problems. Inverse Problems 11, 6, 1211–1223.
MathSciNet
Article
Google Scholar
Louis, A. K. and Maass, P. (1990). A mollifier method for linear operator equations of the first kind. Inverse Problems 6, 3, 427–440.
MathSciNet
Article
Google Scholar
Monard, F., Nickl, R. and Paternain, G. P. (2019). Efficient nonparametric Bayesian inference for X-ray transforms. Ann. Statist. 47, 2, 1113–1147. https://doi.org/10.1214/18-AOS1708.
MathSciNet
Article
Google Scholar
Natterer, F. (1979). On the inversion of the attenuated Radon transform. Numer. Math. 32, 4, 431–438. https://doi.org/10.1007/BF01401046.
MathSciNet
Article
Google Scholar
Natterer, F. (2001a). Inversion of the attenuated Radon transform. Inverse Problems 17, 1, 113–119. https://doi.org/10.1088/0266-5611/17/1/309.
MathSciNet
Article
Google Scholar
Natterer, F. (2001b). The mathematics of computerized tomography. Society for industrial and applied mathematics ???. https://doi.org/10.1137/1.9780898719284.
Novikov, R.G. (2002). An inversion formula for the attenuated x-ray transformation. Arkiv för Matematik 40, 1, 145–167. https://doi.org/10.1007/bf02384507.
MathSciNet
Article
Google Scholar
Rigaud, G. and Lakhal, A. (2015). Approximate inverse and Sobolev estimates for the attenuated Radon transform. Inverse Problems 31, 10, 105010–21. https://doi.org/10.1088/0266-5611/31/10/105010.
MathSciNet
Article
Google Scholar
Rullgå, R.D.H. (2004). An explicit inversion formula for the exponential Radon transform using data from 180∘. Ark. Mat. 42, 2, 353–362. https://doi.org/10.1007/BF02385485.
MathSciNet
Article
Google Scholar
Salo, M. and Uhlmann, G. (2011). The attenuated ray transform on simple surfaces. J. Differential Geom. 88, 1, 161–187.
MathSciNet
Article
Google Scholar
Schuster, T. (2007). The Method of Approximate inverse: Theory and Applications. Lecture Notes in Mathematics, vol. 1906, p. 198. Springer ???. https://doi.org/10.1007/978-3-540-71227-5.
Shneı̆berg, I.Y. (1994). Exponential Radon transform. In: Applied problems of radon transform. Amer. Math. Soc. Transl. Ser. 2, vol. 162, pp. 235–245. Amer. Math. Soc., providence, RI, ???. https://doi.org/10.1090/trans2/162/07.
Shneı̆berg, I.Y., Ponomarev, I.V., Dmitrichenko, V.A. and Kalashnikov, S.D. (1994). On a new reconstruction algorithm in emission tomography. In: Applied problems of radon transform. Amer. Math. Soc. Transl. Ser. 2, vol. 162, pp. 247–255. Amer. Math. Soc., providence, RI, ???. https://doi.org/10.1090/trans2/162/08.
Siltanen, S., Kolehmainen, V., rvenp, S.J., Kaipio, J.P., Koistinen, P., Lassas, M., Pirttil, J. and Somersalo, E. (2003). Statistical inversion for medical x-ray tomography with few radiographs: i. general theory. Phys. Med. Biol.48, 10, 1437–1463. https://doi.org/10.1088/0031-9155/48/10/314.
Article
Google Scholar
Tretiak, O. and Metz, C. (1980). The exponential Radon transform. SIAM. J. Appl. Math. 39, 2, 341–354. https://doi.org/10.1137/0139029.
MathSciNet
MATH
Google Scholar
Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer, Berlin, p. 214. https://doi.org/10.1007/b13794.
MATH
Google Scholar
Vänskä, S., Lassas, M. and Siltanen, S. (2009). Statistical X-ray tomography using empirical Besov priors. Int. J. Tomogr. Stat. 11, S09, 3–32.
MathSciNet
Google Scholar
Wen, J. and Liang, Z. (2006). An inversion formula for the exponential radon transform in spatial domain with variable focal-length fan-beam collimation geometry. Med. Phys. 33, 3, 792–798. https://doi.org/10.1118/1.2170596.
Article
Google Scholar