Skip to main content
Log in

Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We derive the limiting distribution for the outlier eigenvalues of the adjacency matrix for random graphs with independent edges whose edge probability matrices have low-rank structure. We show that when the number of vertices tends to infinity, the leading eigenvalues in magnitude are jointly multivariate Gaussian with bounded covariances. As a special case, this implies a limiting normal distribution for the outlier eigenvalues of stochastic blockmodel graphs and their degree-corrected or mixed-membership variants. Our result extends the classical result of Füredi and Komlós on the fluctuation of the largest eigenvalue for Erdős–Rényi graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research9, 1981–2014.

    MATH  Google Scholar 

  • Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. Journal of Mathematical Analysis and Applications, 20, 262–268.

  • Avrachenkov, K., Cottatellucci, L. and Kadavankandy, A. (2015). Spectral properties of random matrices for stochastic block model. In Proceedings of the 4th, International Workshop on Physics-Inspired Paradigms in Wireless Communications and Networks (pp. 537–544).

  • Benaych-Georges, F. and Nadakuditi, R. R. (2011). The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Advances in Mathematics 227, 494–521.

    Article  MathSciNet  Google Scholar 

  • Bordenave, C. and Capitaine, M. (2016). Outlier eigenvalues for deformed i.i.d. random matrices. Communications on Pure and Applied Mathematics 69, 2131–2194.

    Article  MathSciNet  Google Scholar 

  • Boucheron, S., Lugosi, G. and Massart, P. (2003). Concentration inequalities using the entropy method. Annals of Probability 31, 1583–1614.

    Article  MathSciNet  Google Scholar 

  • Cape, J., Tang, M. and Priebe, C. E. (2017). The Kato-Temple inequality and eigenvalue concentration. Electronic Journal of Statistics 11, 3954–3978.

    Article  MathSciNet  Google Scholar 

  • Capitaine, M., Donati-Martin, C. and Féral, D. (2009). The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37, 1–47.

    Article  MathSciNet  Google Scholar 

  • Capitaine, M., Donati-Martin, C. and Féral, D. (2012). Central limit theorems for eigenvalues of deformations of Wigner matrices. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 48, 107–133.

    Article  MathSciNet  Google Scholar 

  • Chakrabarty, A., Chakraborty, S. and Hazra, R. S. (2020). Eigenvalues outside the bulk of inhomogeneous Erdos-Renyi random graphs. Journal of Statistical Physics 181, 1746–1780.

    Article  MathSciNet  Google Scholar 

  • Davis, C. and Kahan, W. (1970). The rotation of eigenvectors by a pertubation. III. SIAM Journal on Numerical Analysis, 7, 1–46.

    Article  MathSciNet  Google Scholar 

  • Ding, X. and Jiang, T. (2010). Spectral distributions of adjacency and Laplacian matrices of random graphs. Annals of Applied Probability 20, 2086–2117.

    Article  MathSciNet  Google Scholar 

  • Donoho, D., Gavish, M. and Johnstone, I. (2018). Optimal shrinkage of eigenvalues in the spiked covariance model. Annals of Statistics 46, 1742–1778.

    Article  MathSciNet  Google Scholar 

  • Erdös, L., Péché, S., Ramirez, J. A., Schlein, B. and Yau, H.-T. (2010). Bulk universality for W,igner matrices. Communications on Pure and Applied Mathematics 63, 895–925.

    MathSciNet  MATH  Google Scholar 

  • Erdös, L., Schlein, B. and Yau, H. -T. (2009). Local semicircle law and complete delocalization for Wigner random matrices. Communications in Mathematical Physics 287, 641–655.

    Article  MathSciNet  Google Scholar 

  • Füredi, Z. and Komlós, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241.

    Article  MathSciNet  Google Scholar 

  • Ghoshdastidar, D., Gutzeit, M., Carpentier, A. and von Luxburg, U. (2017). Two-sample tests for large random graphs using network statistics. In Proceedings of Machine Learning Research (vol. 65, pp. 1–24).

  • Holland, P. W., Laskey, K. B. and Leinhardt, S. (1983). Stochastic blockmodels: first steps. Social Networks 5, 109–137.

    Article  MathSciNet  Google Scholar 

  • Karrer, B. and Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E 83, 016107.

    Article  MathSciNet  Google Scholar 

  • Knowles, A. and Yin, J. (2013). Eigenvector distribution of Wigner matrices. Probability Theory and Related Fields 155, 543–582.

    Article  MathSciNet  Google Scholar 

  • Knowles, A. and Yin, J. (2014). The outliers of a deformed Wigner matrix. Annals of Probability 42, 1980–2031.

    Article  MathSciNet  Google Scholar 

  • Koltchinskii, V. and Giné, E. (2000). Random matrix approximation of spectra of integral operators. Bernoulli 6, 113–167.

    Article  MathSciNet  Google Scholar 

  • Lei, J. (2016). A goodness-of-fit test for stochastic block models. Annals of Statistics 44, 401–424.

    MathSciNet  MATH  Google Scholar 

  • Noroozi, M., Rimal, R. and Pensky, M. (2019). Estimation and clustering in popularity adjusted stochastic blockmodel. arXiv:http://arxiv.org/abs/1902.00431

  • O’Rourke, S. and Renfrew, D. (2014). Low rank perturbation of large elliptic random matrices. Electronic Journal of Probability 19, 1–65.

    MathSciNet  MATH  Google Scholar 

  • O’Rourke, S. and Vu, V. (2018). K. Wang. Random perturbation of low rank matrices Improving classical bounds. Linear Algebra and its Applications540, 26–59.

    Article  MathSciNet  Google Scholar 

  • Péché, S. (2006). The largest eigenvalue of small-rank perturbations of Hermitean random matrices. Probability Theory and Related Fields 134, 127–173.

    Article  MathSciNet  Google Scholar 

  • Pizzo, A., Renfrew, D. and Soshnikov, A. (2013). On finite rank deformation of Wigner matrices. Annales de l’Institut Henri Poincaré Probabilités et Statistiques 49, 64–94.

    Article  MathSciNet  Google Scholar 

  • Rubin-Delanchy, P., Cape, J., Priebe, C. E. and Tang, M. (2017). A statistical interpretation of spectral embedding The random dot product graph. arXiv:http://arxiv.org/abs/1709.05506

  • Sengupta, S. and Chen, Y. (2018). A blockmodel for node popularity in networks with community structure. Journal of the Royal Statistical Society Series B, 365–386.

  • Soshnikov, A. (1999). Universality at the edge of the spectrum in Wigner random matrices. Communications in Mathematical Physics 207, 697–733.

    Article  MathSciNet  Google Scholar 

  • Tang, M., Athreya, A., Sussman, D. L., Lyzinski, V., Park, Y. and Priebe, C. E. (2017). A semiparametric two-sample hypothesis testing problem for random dot product graphs. Journal of Computational and Graphical Statistics 26, 344–354.

    Article  MathSciNet  Google Scholar 

  • Tao, T. and Vu, V. (2010). Random matrices: universality of local eigenvalue statistics up to the edge. Communications in Mathematical Physics 298, 549–572.

    Article  MathSciNet  Google Scholar 

  • Tao, T. and Vu, V. (2012). Random matrices: universal properties of eigenvectors. Random Matrices: Theory and Applications, 1.

  • Tokuda, T. (2018). Statistical test for detecting community structure in real-valued edge-weighted graphs. PLoS ONE 13, e0194079.

    Article  Google Scholar 

  • Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Annals of Mathematics 62, 548–564.

    Article  MathSciNet  Google Scholar 

  • Young, S. and Scheinerman, E. (2007). Random dot product graph models for social networks. In Proceedings of the 5th international conference on algorithms and models for the web-graph (pp. 138–149).

  • Yu, Y., Wang, T. and Samworth, R. J. (2015). A useful variant of the Davis-Kahan theorem for statisticians. Biometrika 102, 315–323.

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Nadakuditi, R. R. and Newman, M. E. (2014). Spectra of random graphs with community structure and arbitrary degrees. Physical Review E, 89.

Download references

Funding

The research leading to these results received funding from the Defense Advanced Research Projects Agency under Grant Agreement No. FA8750-12-2-0303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanti Athreya.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athreya, A., Cape, J. & Tang, M. Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices. Sankhya A 84, 36–63 (2022). https://doi.org/10.1007/s13171-021-00268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-021-00268-x

Keywords

AMS (2000) subject classification

Navigation