Bender-deMoll, S., Morris, M. and Moody, J. (2008). Prototype packages for managing and animating longitudinal network data: dynamicnetwork and rSoNIA. J. Stat. Softw., 24.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. 36, 192–236.
MathSciNet
MATH
Google Scholar
Besag, J. (1975). Statistical analysis of non-lattice data. Statistician24, 179–195.
Article
Google Scholar
Caragea, P.C. and Kaiser, M. S. (2009). Autologistic models with interpretable parameters. J. Agric. Biol. Environ. Stat. 14, 281–300. ISSN 1085-7117. http://www.springerlink.com/index/10.1198/jabes.2009.07032.
MathSciNet
Article
Google Scholar
Casleton, E., Nordman, D. and Kaiser, M. (2017). A local structure model for network analysis. Stat. Interface 10, 355–367.
MathSciNet
Article
Google Scholar
Casleton, E., Nordman, D. and Kaiser, M. (2020). Local structure graph models with higher-order dependence. Can. J. Stat., to appear.
Cressie, N (1993). Statistics For Spatial Data. Wiley-Interscience, New York.
Book
Google Scholar
Frank, O. and Strauss, D. (1986). Markov Graphs. J. Am. Stat. Assoc. 81, 832–842.
MathSciNet
Article
Google Scholar
Girvan, M. and Newman, M.E.J. (2002). Community structure in social and biological networks. Proc. Natl Acad. Sci. 99, 7821–7826.
MathSciNet
Article
Google Scholar
Goodreau, S. M., Handcock, M.S., Hunter, D.R., Butts, C.T. and Morris, M. (2008). A statnet Tutorial. J. Stat. Softw. 24, 1.
Article
Google Scholar
Guo, J., Wilson, A.G. and Nordman, D.J. (2013). Bayesian Nonparametric Models for Community Detection. Technometrics 55, 390–402.
MathSciNet
Article
Google Scholar
Guyon, X. (1995). Random fields on a network: modeling, statistics, and applications. Springer, New York.
MATH
Google Scholar
Handcock, M.S. (2003). Assessing degeneracy in statistical models of social networks. Assessing degeneracy in statistical models of social networks. Working Paper 39, Center for Statistics and the Social Sciences, University of Washington, Seattle.
Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Krivitsky, P.N., Bender-deMoll, S. and Morris, M., (2014). statnet: software tools for the statistical analysis of network data. The Statnet Project (http://www.statnet.org). CRAN.R-project.org/package=statnet. R package version 2014.2.0.
Hunter, D.R. (2007). Curved exponential family models for social networks. Social Netw. 29, 216–230.
Article
Google Scholar
Hunter, D.R. and Handcock, M.S. (2006). Inference in curved exponential family models for networks. J. Comput. Graph. Stat. 15, 565–583. ISSN 1061-8600. https://doi.org/10.1198/106186006X133069.
MathSciNet
Article
Google Scholar
Hunter, D.R., Goodreau, S.M. and Handcock, M.S. (2008a). Goodness of fit of social network models. J. Am. Stat. Assoc. 103, 248–258.
MathSciNet
Article
Google Scholar
Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M. and Morris, M. (2008b). ergm: a package to fit, simulate and diagnose exponential-family models for networks. J. Stat. Softw. 24, 1–29.
Article
Google Scholar
Kaiser, M.S. and Cressie, N. (2000). The construction of multivariate distributions from Markov random fields. J. Multivar. Anal. 73, 199–220.
MathSciNet
Article
Google Scholar
Kaiser, M.S. and Nordman, D.J. (2012). Blockwise empirical likelihood for spatial Markov model assessment. Stat. Interface 5, 303–318.
MathSciNet
Article
Google Scholar
Kaiser, M. S., Caragea, P.C. and Furukawa, K. (2012a). Centered parameterizations and dependence limitations in Markov random field models. J. Stat. Plan. Inference 142, 1855–1863.
MathSciNet
Article
Google Scholar
Kaiser, M.S., Lahiri, S.N. and Nordman, D.J. (2012b). Goodness of fit tests for a class of Markov random field models. Ann. Stat. 40, 104–130.
MathSciNet
Article
Google Scholar
Kaplan, A., Nordman, D.J. and Vardeman, S.B. (2020). On the S-instability and degeneracy of discrete deep learning models. Inf. Inference: A Journal of the IMA 9, 627–655.
MathSciNet
Article
Google Scholar
Kashirin, V.V. and Dijkstra, L.J. (2013). A heuristic optimization method for mitigating the impact of a virus attack. Procedia Comput. Sci. 18, 2619–2628.
Article
Google Scholar
Kolaczyk, E.D. (2009). Statistical analysis of network data: methods and models. Springer, New York.
Book
Google Scholar
Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008). Phys. Rev. E 78, 1–5. ISSN 1539-3755. https://doi.org/10.1103/PhysRevE.78.046110.
Article
Google Scholar
Lee, J., Kaiser, M.S. and Cressie, N. (2001). Multiway dependence in exponential family conditional distributions. J. Multivar. Anal. 79, 171–190.
MathSciNet
Article
Google Scholar
Lofgren, E. (2012). Visualizing results from infection transmission models. Epidemiology 23, 738–741.
Article
Google Scholar
Lunga, D. and Kirshner, S. (2011). Generating similar graphs from spherical features, San Diego,.
Morris, M., Handcock, M.S. and Hunter, D.R. (2008). Specification of exponential-family random graph models: terms and computational aspects. J. Stat. Softw.24, 1548–7660. ISSN 1548-7660. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2481518&tool=pmcentrez&rendertype=abstract.
Article
Google Scholar
R Core Team (2013). R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
Resnick, M.D., Bearman, P.S., Blum, R.W., Bauman, K.E., Harris, K.M, Jones, J., Tabor, J., Beuhring, T. , Sieving, R.E., Shew, M. et al (1997). Protecting adolescents from harm: findings from the National Longitudinal Study on Adolescent Health. JAMA 278, 823–832.
Article
Google Scholar
Robins, G., Snijders, T., Wang, P., Handcock, M. and Pattison, P. (2007). Recent developments in exponential random graph (p∗) models for social networks. Social Netw. 29, 192–215.
Article
Google Scholar
Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. J. Am. Stat. Assoc. 106, 1361–1370.
MathSciNet
Article
Google Scholar
Schweinberger, M. and Handcock, M.S. (2012). Hierarchical exponential-family random graph models with local dependence.
Snijders, Tom A. B. (2002). Markov Chain Monte Carlo estimation of exponential random graph models. J. Social Struct. 3, 1–40.
Google Scholar
Snijders, T.A.B., Pattison, P.E., Robins, G.L. and Handcock, M.S. (2006). New specifications for exponential random graph models. Sociol. Methodol.36, 99–153.
Article
Google Scholar
Strauss, D. (1986). On a general class of models for interaction. SIAM Rev. 28, 513–527.
MathSciNet
Article
Google Scholar
Vasques Filho, D. and O’Neale, D.R.J. (2020). Transitivity and degree assortativity explained: the bipartite structure of social networks. Phys. Rev. E 101, 052305.
MathSciNet
Article
Google Scholar
Wang, P., Robins, G., Pattison, P. and Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Netw. 35, 96–115.
Article
Google Scholar