Skip to main content

Modeling Transitivity in Local Structure Graph Models

Abstract

Local Structure Graph Models (LSGMs) describe network data by modeling, and thereby controlling, the local structure of networks in a direct and interpretable manner. Specification of such models requires identifying three factors: a saturated, or maximally possible, graph; a neighborhood structure of dependent potential edges; and, lastly, a model form prescribed by full conditional binary distributions with appropriate “centering” steps and dependence parameters. This last aspect particularly distinguishes LSGMs from other model formulations for network data. In this article, we explore the expanded LSGM structure to incorporate dependencies among edges that form potential triangles, thus explicitly representing transitivity in the conditional probabilities that govern edge realization. Two networks previously examined in the literature, the Faux Mesa High friendship network and the 2000 college football network, are analyzed with such models, with a focus on assessing the manner in which terms reflecting two-way and three-way dependencies among potential edges influence the data structures generated by models that incorporate them. One conclusion reached is that explicit modeling of three-way dependencies is not always needed to reflect the observed level of transitivity in an actual graph. Another conclusion is that understanding the manner in which a model represents a given problem is enhanced by examining several aspects of model structure, not just the number of some particular topological structure generated by a fitted model.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Notes

  1. The binary conditionals with centered parameterizations in (3.3)–(3.5) induce a curved exponential joint distribution for the LSGMs here and simulations from models fit by pseudo-likelihood (or maximum likelihood) estimation may not produce proportions of realized edges that match, on average, those from the original data. Due to the curved exponential form, the natural parameter space of these LSGMs is also not of the same dimension as the true parameter space; for the Faux Mesa High network, Models 1,2,3 have 4,4,5 parameters, respectively, while the dimensions of a full rank minimally sufficient statistic are 7,10,14 in these models. See the Supplementary Materials for more details on these joint distributions and minimal sufficiency.

References

  • Bender-deMoll, S., Morris, M. and Moody, J. (2008). Prototype packages for managing and animating longitudinal network data: dynamicnetwork and rSoNIA. J. Stat. Softw., 24.

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. 36, 192–236.

    MathSciNet  MATH  Google Scholar 

  • Besag, J. (1975). Statistical analysis of non-lattice data. Statistician24, 179–195.

    Article  Google Scholar 

  • Caragea, P.C. and Kaiser, M. S. (2009). Autologistic models with interpretable parameters. J. Agric. Biol. Environ. Stat. 14, 281–300. ISSN 1085-7117. http://www.springerlink.com/index/10.1198/jabes.2009.07032.

    MathSciNet  Article  Google Scholar 

  • Casleton, E., Nordman, D. and Kaiser, M. (2017). A local structure model for network analysis. Stat. Interface 10, 355–367.

    MathSciNet  Article  Google Scholar 

  • Casleton, E., Nordman, D. and Kaiser, M. (2020). Local structure graph models with higher-order dependence. Can. J. Stat., to appear.

  • Cressie, N (1993). Statistics For Spatial Data. Wiley-Interscience, New York.

    Book  Google Scholar 

  • Frank, O. and Strauss, D. (1986). Markov Graphs. J. Am. Stat. Assoc. 81, 832–842.

    MathSciNet  Article  Google Scholar 

  • Girvan, M. and Newman, M.E.J. (2002). Community structure in social and biological networks. Proc. Natl Acad. Sci. 99, 7821–7826.

    MathSciNet  Article  Google Scholar 

  • Goodreau, S. M., Handcock, M.S., Hunter, D.R., Butts, C.T. and Morris, M. (2008). A statnet Tutorial. J. Stat. Softw. 24, 1.

    Article  Google Scholar 

  • Guo, J., Wilson, A.G. and Nordman, D.J. (2013). Bayesian Nonparametric Models for Community Detection. Technometrics 55, 390–402.

    MathSciNet  Article  Google Scholar 

  • Guyon, X. (1995). Random fields on a network: modeling, statistics, and applications. Springer, New York.

    MATH  Google Scholar 

  • Handcock, M.S. (2003). Assessing degeneracy in statistical models of social networks. Assessing degeneracy in statistical models of social networks. Working Paper 39, Center for Statistics and the Social Sciences, University of Washington, Seattle.

  • Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Krivitsky, P.N., Bender-deMoll, S. and Morris, M., (2014). statnet: software tools for the statistical analysis of network data. The Statnet Project (http://www.statnet.org). CRAN.R-project.org/package=statnet. R package version 2014.2.0.

  • Hunter, D.R. (2007). Curved exponential family models for social networks. Social Netw. 29, 216–230.

    Article  Google Scholar 

  • Hunter, D.R. and Handcock, M.S. (2006). Inference in curved exponential family models for networks. J. Comput. Graph. Stat. 15, 565–583. ISSN 1061-8600. https://doi.org/10.1198/106186006X133069.

    MathSciNet  Article  Google Scholar 

  • Hunter, D.R., Goodreau, S.M. and Handcock, M.S. (2008a). Goodness of fit of social network models. J. Am. Stat. Assoc. 103, 248–258.

    MathSciNet  Article  Google Scholar 

  • Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M. and Morris, M. (2008b). ergm: a package to fit, simulate and diagnose exponential-family models for networks. J. Stat. Softw. 24, 1–29.

    Article  Google Scholar 

  • Kaiser, M.S. and Cressie, N. (2000). The construction of multivariate distributions from Markov random fields. J. Multivar. Anal. 73, 199–220.

    MathSciNet  Article  Google Scholar 

  • Kaiser, M.S. and Nordman, D.J. (2012). Blockwise empirical likelihood for spatial Markov model assessment. Stat. Interface 5, 303–318.

    MathSciNet  Article  Google Scholar 

  • Kaiser, M. S., Caragea, P.C. and Furukawa, K. (2012a). Centered parameterizations and dependence limitations in Markov random field models. J. Stat. Plan. Inference 142, 1855–1863.

    MathSciNet  Article  Google Scholar 

  • Kaiser, M.S., Lahiri, S.N. and Nordman, D.J. (2012b). Goodness of fit tests for a class of Markov random field models. Ann. Stat. 40, 104–130.

    MathSciNet  Article  Google Scholar 

  • Kaplan, A., Nordman, D.J. and Vardeman, S.B. (2020). On the S-instability and degeneracy of discrete deep learning models. Inf. Inference: A Journal of the IMA 9, 627–655.

    MathSciNet  Article  Google Scholar 

  • Kashirin, V.V. and Dijkstra, L.J. (2013). A heuristic optimization method for mitigating the impact of a virus attack. Procedia Comput. Sci. 18, 2619–2628.

    Article  Google Scholar 

  • Kolaczyk, E.D. (2009). Statistical analysis of network data: methods and models. Springer, New York.

    Book  Google Scholar 

  • Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008). Phys. Rev. E 78, 1–5. ISSN 1539-3755. https://doi.org/10.1103/PhysRevE.78.046110.

    Article  Google Scholar 

  • Lee, J., Kaiser, M.S. and Cressie, N. (2001). Multiway dependence in exponential family conditional distributions. J. Multivar. Anal. 79, 171–190.

    MathSciNet  Article  Google Scholar 

  • Lofgren, E. (2012). Visualizing results from infection transmission models. Epidemiology 23, 738–741.

    Article  Google Scholar 

  • Lunga, D. and Kirshner, S. (2011). Generating similar graphs from spherical features, San Diego,.

  • Morris, M., Handcock, M.S. and Hunter, D.R. (2008). Specification of exponential-family random graph models: terms and computational aspects. J. Stat. Softw.24, 1548–7660. ISSN 1548-7660. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2481518&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Resnick, M.D., Bearman, P.S., Blum, R.W., Bauman, K.E., Harris, K.M, Jones, J., Tabor, J., Beuhring, T. , Sieving, R.E., Shew, M. et al (1997). Protecting adolescents from harm: findings from the National Longitudinal Study on Adolescent Health. JAMA 278, 823–832.

    Article  Google Scholar 

  • Robins, G., Snijders, T., Wang, P., Handcock, M. and Pattison, P. (2007). Recent developments in exponential random graph (p) models for social networks. Social Netw. 29, 192–215.

    Article  Google Scholar 

  • Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. J. Am. Stat. Assoc. 106, 1361–1370.

    MathSciNet  Article  Google Scholar 

  • Schweinberger, M. and Handcock, M.S. (2012). Hierarchical exponential-family random graph models with local dependence.

  • Snijders, Tom A. B. (2002). Markov Chain Monte Carlo estimation of exponential random graph models. J. Social Struct. 3, 1–40.

    Google Scholar 

  • Snijders, T.A.B., Pattison, P.E., Robins, G.L. and Handcock, M.S. (2006). New specifications for exponential random graph models. Sociol. Methodol.36, 99–153.

    Article  Google Scholar 

  • Strauss, D. (1986). On a general class of models for interaction. SIAM Rev. 28, 513–527.

    MathSciNet  Article  Google Scholar 

  • Vasques Filho, D. and O’Neale, D.R.J. (2020). Transitivity and degree assortativity explained: the bipartite structure of social networks. Phys. Rev. E 101, 052305.

    MathSciNet  Article  Google Scholar 

  • Wang, P., Robins, G., Pattison, P. and Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Netw. 35, 96–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Casleton.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casleton, E., Nordman, D.J. & Kaiser, M.S. Modeling Transitivity in Local Structure Graph Models. Sankhya A 84, 389–417 (2022). https://doi.org/10.1007/s13171-021-00264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-021-00264-1

Keywords

  • Conditionally specified models
  • network analysis
  • network model assessment
  • random graphs
  • transitivity.

AMS (2000) subject classification

  • Primary 05C80
  • Secondary 62M05