Skip to main content
Log in

An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

The Bayesian sampling plan for two-parameter exponential distribution has been considered by Lam (Statistician, 39, 53–66, 1990) under the conventional Type-II censoring. Lin et al. (Commun. Stat.—Simul. Comput., 37, 1101–1116, 2008b) have obtained an exact Bayesian sampling plan for one-parameter exponential distribution under Type-I and Type-II hybrid censoring schemes. In this paper, we obtain an optimal Bayesian sampling plan for the two-parameter exponential distribution under Type-I hybrid censoring scheme based on a four-parameter conjugate prior, introduced by Varde (J. Am. Stat. Assoc., 64, 621–631 1969). Bayes risk expressions of Lam (Statistician, 39, 53–66, 1990) for the conventional Type-II censoring scheme can be obtained as special cases of the Type-I hybrid censoring scheme. The optimal Bayesian sampling plan cannot be obtained analytically, we provide a numerical algorithm to compute the optimal Bayesian sampling plan. Different optimal Bayesian sampling plans have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Amin, Z. and Salem, M. (2012). On designing an acceptance sampling plan for the pareto lifetime model. J. Stat. Comput. Simul. 82, 1115–1133.

    Article  MATH  Google Scholar 

  • Aminzadeh, M. (2003). Bayesian economic variable acceptance-sampling plan using inverse gaussian model and step-loss function. Commun. Stat.-Theory Methods 32, 961–982.

    Article  MATH  Google Scholar 

  • Balakrishnan, N., Leiva, V. and Lopez, J. (2007). Acceptance sampling plans from truncated life tests based on the generalized birnbaum-Saunders distribution. Commun. Stat.-Simul. Comput. 36, 643–656.

    Article  MATH  Google Scholar 

  • Bayoud, H A (2012). Bayesian Analysis of Type I Censored Data from Two-Parameter Exponential Distribution. In Proceedings of the World Congress on Engineering, vol. 1.

  • Chen, J., Chou, W., Wu, H. and Zhou, H. (2004a). Designing acceptance sampling schemes for life testing with mixed censoring. Naval Res. Logistics (NRL) 51, 597–612.

    Article  MATH  Google Scholar 

  • Chen, J., Choy, S. and Li, K. (2004b). Optimal Bayesian sampling acceptance plan with random censoring. Eur. J. Oper. Res. 155, 683–694.

    Article  MATH  Google Scholar 

  • Chen, J., Li, K. and Lam, Y. (2007). Bayesian single and double variable sampling plans for the weibull distribution with censoring. Eur. J. Oper. Res. 177, 1062–1073.

    Article  MATH  Google Scholar 

  • Childs, A., Balakrishnan, N. and Chandrasekar, B. (2012). Exact distribution of the mles of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring. Statistics 46, 441–458.

    Article  MATH  Google Scholar 

  • Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on type-I and type-II hybrid censored samples from the exponential distribution. Ann. Inst. Stat. Math. 55, 319–330.

    Article  MATH  Google Scholar 

  • Epstein, B. (1954). Truncated life tests in the exponential case. Ann. Math. Stat. 25, 555–564.

    Article  MATH  Google Scholar 

  • Fertig, K. and Mann, N. (1974). A decision-theoretic approach to defining variables sampling plans for finite lots: single sampling for exponential and gaussian processes. J. Am. Stat. Assoc. 69, 665–671.

    Article  MATH  Google Scholar 

  • Hald, A. (1968). Bayesian single sampling attribute plans for continuous prior distributions. Technometrics 10, 667–683.

    Article  Google Scholar 

  • Huang, W. and Lin, Y. (2002). An improved Bayesian sampling plan for exponential population with type I censoring. Commun. Stat.-Theory Methods 31, 2003–2025.

    Article  MATH  Google Scholar 

  • Huang, W. and Lin, Y. (2004). Bayesian sampling plans for exponential distribution based on uniform random censored data. Comput. Stat. Data Anal. 44, 669–691.

    Article  MATH  Google Scholar 

  • Jianwei, C. and Lam, Y. (1999). Bayesian variable sampling plan for the weibull distribution with type I censoring. Acta Math. Appl. Sin. 15, 269.

    Article  MATH  Google Scholar 

  • Jun, C., Balamurali, S. and Lee, S. (2006). Variables sampling plans for weibull distributed lifetimes under sudden death testing. IEEE Trans. Reliab. 55, 53–58.

    Article  Google Scholar 

  • Kundu, D and Samanta, D and Ganguly, A and Mitra, S (2013). Bayesian analysis of different hybrid and progressive life tests. Communications in Statistics-Simulation and Computation 42, 9, 2160–2173.

    Article  MATH  Google Scholar 

  • Lam, Y. (1988). Bayesian approach to single variable sampling plans. Biometrika 75, 387–391.

    Article  MATH  Google Scholar 

  • Lam, Y. (1990). An optimal single variable sampling plan with censoring. Statistician 39, 53–66.

    Article  Google Scholar 

  • Lam, Y. (1994). Bayesian variable sampling plans for the exponential distribution with type-I censoring. Ann. Stat. 22, 696–711.

    MATH  Google Scholar 

  • Lam, Y. and Cheung, L. (1993). Optimal single variable sampling plans: optimal single variable sampling plans. Commun. Stat.-Simul. Comput. 22, 371–386.

    Article  MATH  Google Scholar 

  • Lam, Y. and Choy, S. (1995). Bayesian variable sampling plans for the exponential distribution with uniformly distributed random censoring. J. Stat. Plan. Inference 47, 277–293.

    Article  MATH  Google Scholar 

  • Liang, T. and Yang, M. (2013). Optimal Bayesian sampling plans for exponential distributions based on hybrid censored samples. J. Stat. Comput. Simul.83, 922–940.

    Article  MATH  Google Scholar 

  • Lin, C., Huang, Y. and Balakrishnan, N. (2008a). Exact Bayesian variable sampling plans for exponential distribution under type-I censoring. In Huber, C., Milnios, N., Mesbah, M., and Nikulin, M., editors, Mathematical Methods in Survival Analysis, Reliability and Quality of Life, chapter 10, pp. 151–162. Wiley Online Library, Hermes, London.

  • Lin, C., Huang, Y. and Balakrishnan, N. (2008b). Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II hybrid censored samples. Commun. Stat.—Simul. Comput. 37, 1101–1116.

    Article  MATH  Google Scholar 

  • Lin, C., Huang, Y. and Balakrishnan, N. (2010). Corrections on “exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II hybrid censored samples”. Commun. Stat.-Simul. Comput. 39, 1499–1505.

    Article  MATH  Google Scholar 

  • Lin, C., Huang, Y. and Balakrishnan, N. (2011). Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring. J. Stat. Comput. Simul. 81, 873–882.

    Article  MATH  Google Scholar 

  • Lin, Y., Liang, T. and Huang, W. (2002). Bayesian sampling plans for exponential distribution based on type I censoring data. Ann. Inst. Stat. Math. 54, 100–113.

    Article  MATH  Google Scholar 

  • Tsai, T., Chiang, J., Liang, T. and Yang, M. (2014). Efficient Bayesian sampling plans for exponential distributions with type-I-censored samples. J. Stat. Comput. Simul. 84, 964–981.

    Article  MATH  Google Scholar 

  • Varde, S. (1969). Life testing and reliability estimation for the two- parameter exponential distribution. J. Am. Stat. Assoc. 64, 621–631.

    Article  MATH  Google Scholar 

  • Wetherill, G. and Campling, G. (1966). The decision theory approach to sampling inspection. J. R. Stat. Soc. Ser. B (Methodol.) 28, 381–416.

    MATH  Google Scholar 

  • Yang, M., Chen, L. and Liang, T. (2017). Optimal Bayesian variable sampling plans for exponential distributions based on modified type-II hybrid censored samples. Commun. Stat.-Simul. Comput. 46, 4722–4744.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the unknown reviewers for their helpful comments which have significantly improved the quality of the manuscript. We also would like to thank to High Performance Computing (HPC) systems at Computer Center, Indian Institute of Technology Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmishtha Mitra.

Ethics declarations

The authors did not receive any funding support from any organization for the submitted work.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 3.2

$$ \begin{array}{@{}rcl@{}} r(n,r,T,\xi) &= & E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}\left[ \ell(\delta(\underline{X}),\lambda,\mu,n,r,T) \right] \\ &= &\! E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu} \left[ nC_{s}+\tau C_{T}-(n-D) r_{s}+\delta (\underline{X})\left(\sum\limits_{0 \leq i+j \leq 2}{C_{ij} \lambda^{i} \mu^{j}}\right) + (1- \delta (\underline{X}))C_{r}\right] \\ &= & n(C_{s}-r_{s})+C_{T} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu)+ r_{s} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) + C_{r} \\ && + E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}\left[\delta(\underline{X})\left( \sum\limits_{0 \leq i+j \leq 2}{C_{ij} \lambda^{i} \mu^{j}}-C_{r}\right)\right] \end{array} $$
(A.1)

Equation A.1 further can be simplified as follows

$$ \begin{array}{@{}rcl@{}} r(n,r,T,\xi) &= & n(C_{s}-r_{s})+C_{r}+C_{T} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu)+ r_{s} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) \\ && + E_{\lambda,\mu} \left[\left( \sum\limits_{0 \leq i+j \leq 2}{C_{ij} \lambda^{i} \mu^{j}}-C_{r} \right) \left( P(D=0)+P(\widehat{W}\geq \xi |\lambda,\mu)\right)\right] \\ &= & n(C_{s}-r_{s})+C_{r}+C_{T} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu)+ r_{s} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) \\ && + (C_{00}-C_{r}) E_{\lambda,\mu} \left(e^{-n \lambda (T-\mu)}\right) + \sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}\left( \lambda^{i} \mu^{j} e^{-n \lambda (T-\mu )} \right) \\&&+ \sum\limits_{0 \leq i+j \leq 2}{C^{\prime}_{ij} I_{ij} }, \end{array} $$

where \( I_{ij} = E_{\lambda ,\mu } \left ( \lambda ^{i} \mu ^{j} P(\widehat {W}\geq \xi |\lambda ,\mu ) \right ) \). Further \( E_{\lambda ,\mu } E_{\underline {X}|\lambda ,\mu }(\tau |\lambda ,\mu ) \), Eλ,μ \(E_{\underline {X}|\lambda ,\mu }(D|\lambda ,\mu )\) and \( {\sum }_{0 \leq i+j \leq 2} C_{ij} E_{\lambda ,\mu }\left (\lambda ^{i} \mu ^{j} e^{-n \lambda (T-\mu )} \right )\) and Iij have been obtained. In the remaining proof, it is to be noted that the Bayes risk in explicit forms has been provided for α > 1.

Computation of I ij

Case (i)::

r = 1 and n ≥ 1

Suppose notations η1, \(\xi _{\mu }^{*}\) and \(\xi _{T}^{*}\) are defined as \(\eta _{1} = {\min \limits } \{\eta ,T\}\), \(\xi _{\mu }^{*}= \max \limits \{\xi ,\mu \}\) and \(\xi _{T}^{*}= \max \limits \{\xi ,T\}\), respectively, then

$$ \begin{array}{@{}rcl@{}} I_{ij} & =& \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} f_{\widehat{W}}(x) \ dx d\lambda d\mu \\ & =& \frac{1}{A} \sum\limits_{l=0}^{\infty} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{nl} \left\{ g(x-\mu;1,n\lambda)\right.\\ &&\left.- q^n g(x-T;1,n\lambda) \right\} \ dx d\lambda d\mu \\ & =& \frac{1}{A} \sum\limits_{l=0}^{\infty} \left\{ {\int}_{0}^{\eta_1} {\int}_{\xi_{\mu}^{*}}^{\infty} {\int}_{0}^{\infty} n \lambda^{\alpha+i-1} \mu^j e^{-\lambda \left( \beta -\gamma \mu + nl(T-\mu) \right)} \left( n \lambda e^{-n \lambda (x-\mu)} \right) \ d\lambda dx d\mu \right.\\ &&\left.- {\int}_{0}^{\eta_1} {\int}_{\xi_{T}^{*}}^{\infty} {\int}_{0}^{\infty} n \lambda^{\alpha+i-1} \mu^j e^{-\lambda \left( \beta -\gamma \mu + n(l+1)(T-\mu) \right)} \left( n \lambda e^{-n \lambda (x-T)} \right) \ d\lambda dx d\mu \right\} \\ & =& \frac{1}{A} \sum\limits_{l=0}^{\infty} \left\{ {\int}_{0}^{\eta_1} {\int}_{\xi_{\mu}^{*}}^{\infty} \frac{n {\Gamma}(\alpha+i+1) \mu^j }{\left( \beta -\gamma \mu + nl(T-\mu) + n(x-\mu) \right)^{\alpha+i+1}} dx d\mu \right. \\ && \left.- {\int}_{0}^{\eta_1} {\int}_{\xi_{T}^{*}}^{\infty} \frac{n {\Gamma}(\alpha+i+1) \mu^j }{\left( \beta -\gamma \mu + n(l+1)(T-\mu) + n(x-T) \right)^{\alpha+i+1}} dx d\mu \right\} \\ & =& \frac{\Gamma{(\alpha+i)}}{A} \sum\limits_{l=0}^{\infty} \left\{ {\int}_{0}^{\eta_1} \frac{\mu^j }{\left( \beta -\gamma \mu + nl(T-\mu) + n(\xi_{\mu}^{*} -\mu) \right)^{\alpha+i}} \ d\mu \right. \\ &&\left. - {\int}_{0}^{\eta_1} \frac{\mu^j }{\left( \beta -\gamma \mu + n(l+1)(T-\mu) + n(\xi_{T}^{*} -T) \right)^{\alpha+i}} \ d\mu \right\}. \end{array} $$
Case (ii)::

r = 2 and n = 2

In this case, Iij can be expressed as

$$ \begin{array}{@{}rcl@{}} I_{ij} &= & \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} P_{\underline{X}|\lambda,\mu}(\widehat{W}\geq \xi |\lambda,\mu) \ d\lambda d\mu \\ &= & \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} \left[ I_{\{ \xi < \mu \}} + I_{\{\mu \leq \xi \leq T \}} \left\{ \sum\limits_{l = 0}^{\infty} q^{2l} \left[ 2 q (1-q) S_1 (\xi) \right. \right.\right.\\ &&\left.\left.\left. + S_2 (\xi-\mu; 2, 2\lambda) + q^2 S_2 (\xi-T; 2, 2\lambda) - 2q S_2 (\xi-\frac{\mu+T}{2}; 2, 2\lambda) \right] \right\} \right] \ d\lambda d\mu \\ &= & \frac{1}{A} \left\{ M_0 + \sum\limits_{l=0}^{\infty} 2(M_{l1} - M_{l4}) + M_{l2} + M_{l3} \right\}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} M_{0} = {\int}_{\xi}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} \ d\lambda d\mu = {\Gamma}(\alpha+i) {\int}_{\xi}^{\eta_1} \frac{\mu^j}{(\beta-\gamma \mu )^{\alpha+i}} \ d \mu, \end{array} $$

and also, with another notation \(\eta _{2} = \min \limits \{\xi ,\eta _{1}\}\),

$$ \begin{array}{@{}rcl@{}} M_{l1} & = & {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{2l+1} (1-q) S_1(\xi) \ d\lambda d\mu \\ & = & \left\{\begin{array}{lll} {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda \left( \beta-\gamma \mu + (2l+1)(T-\mu)\right)} \left( 1-e^{-\lambda(T-\mu)}\right) \ d\lambda d\mu , & \text{if~} \xi < T \\ 0, & \text{if~} \xi \geq T \end{array}\right. \\ & = & \left\{\begin{array}{lll} {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda \left( \beta-\gamma \mu + (2l+1)(T-\mu)\right)} \ d\lambda d\mu \\ - {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda \left( \beta-\gamma \mu + 2(l+1)(T-\mu)\right)} \ d\lambda d\mu , & \text{if~} \xi < T \\ 0, & \text{if~} \xi \geq T \end{array}\right. \\ & = & \left\{\begin{array}{lll} {\Gamma}(\alpha + i) {\int}_{0}^{\eta_2} \mu^{j} \left\{ \frac{1}{\left( \beta-\gamma \mu + (2l+1)(T\!-\mu)\right)^{\alpha+i}} - \frac{1}{\left( \beta-\gamma \mu \!+ 2(l+\!1)(T\!-\mu)\right)^{\alpha+i}} \right\} \ d\mu , & \text{if~} \xi \!<\! T \\ 0, & \text{if~} \xi \!\geq\! T \end{array}\right. \end{array} $$

as α + i > 0, βγμ + (2l + 1)(Tμ) > 0 and βγμ + 2(l + 1)(Tμ) > 0,

$$ \begin{array}{@{}rcl@{}} M_{l2} &= & {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{2l} S_2(\xi-\mu,2,2\lambda) \ d\lambda d\mu \\ &= & {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu + 2l(T-\mu))} \left\{ \frac{(2\lambda)^2}{\Gamma(2)} {\int}_{\xi-\mu}^{\infty} u e^{-2 \lambda u} \ du \right\} d\lambda d\mu \\ &= & 4 {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} {\int}_{\xi-\mu}^{\infty} \lambda^{\alpha +i+1} \mu^{j} u e^{- \lambda (\beta-\gamma \mu + 2l(T-\mu)+2u)} \ du d\lambda d\mu. \end{array} $$

Note that βγμ + 2l(Tμ) + 2u is strictly positive, therefore

$$ \begin{array}{@{}rcl@{}} M_{l2} &= & 4 {\int}_{0}^{\eta_2} {\int}_{\xi-\mu}^{\infty} \frac{\Gamma(\alpha +i+2) \mu^{j} u }{ (\beta-\gamma \mu + 2l(T-\mu)+2u)^{\alpha+i+2}} \ du d\mu. \end{array} $$

Let x = 2u/(βγμ + 2l(Tμ)) and also define \(\xi _{1}^{*}(\mu ) = 2(\xi -\mu )/(\beta -\gamma \mu + 2l(T-\mu ))\), then

$$ \begin{array}{@{}rcl@{}} M_{l2} &= & {\Gamma}(\alpha +i) \left\{ \frac{1}{B(2,\alpha+i)} {\int}_{0}^{\eta_2} {\int}_{\xi_{1}^{*}(\mu)}^{\infty} \frac{\mu^{j}}{ (\beta-\gamma \mu + 2l(T-\mu))^{\alpha+i}} \frac{x^{2-1}}{(1+x)^{\alpha+i+2}} \ dx d\mu \right\} \\ &= & {\Gamma}(\alpha +i) D_{1}(2,\alpha+i,2l,\eta_2), \end{array} $$

where \(D_{s}(a,b,y,x) = {\int \limits _{0}^{x}} \frac {\mu ^{j} \left (1 - I_{\xi _{s}^{*}(\mu )/(1+\xi _{s}^{*}(\mu ))}(a,b)\right )}{ (\beta -\gamma \mu + y(T-\mu ))^{\alpha +i}} \ d\mu \) and It(a, b) denotes the cdf of probability distribution Beta(a,b) at t. Now, thus and so

$$ \begin{array}{@{}rcl@{}} M_{l3} &= & {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{2(l+1)} S_2(\xi-T,2,2\lambda) \ d\lambda d\mu \\ &= & \left\{\begin{array}{lll} {\Gamma}(\alpha +i) \int\limits_{0}^{\eta_2} \frac{\mu^{j}}{\left( \beta-\gamma \mu + 2(l+1)(T-\mu)\right)^{\alpha+i}} \ d\mu , & \text{if~} \xi < T \\ {\Gamma}(\alpha +i) D_{2}(2,\alpha+i,2(l+1),\eta_2), & \text{if~} \xi \geq T \end{array}\right. \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} M_{l4} &= & {\int}_{0}^{\eta_2} {\int}_{0}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{2l+1} S_2(\xi-\frac{\mu+T}{2},2,2\lambda) d \ d\lambda d\mu \\ &= & {\Gamma}(\alpha +i) \left\{ \int\limits_{\min\{\eta_2, \max\{0,2\xi-T\} \}}^{\eta_2} \frac{\mu^{j}}{ (\beta-\gamma \mu + (2l+1)(T-\mu))^{\alpha+i} } \ d\mu \right. \\ &&\left. +D_{3}(2,\alpha+i,2l+1,\max\{0,\min\{(2\xi-T),\eta_2\}\}) \vphantom{\int\limits_{min\{\eta_2, max\{0,2\xi-T\} \}}^{\eta_2}}\right\} \end{array} $$

with \(\xi _{2}^{*}(\mu ) = \frac {2(\xi -T)}{(\beta -\gamma \mu + 2(l+1)(T-\mu ))}\) and \( \xi _{3}^{*}(\mu ) = \frac {2(\xi -(\mu +T)/2)}{(\beta -\gamma \mu + (2l+1)(T-\mu ))}\), respectively.

Case (iii)::

r ≥ 2 and n ≥ 3

$$ \begin{array}{@{}rcl@{}} I_{ij} &= & \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} f_{\widehat{W}}(x) \ dx d\lambda d\mu \\ &= & \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} \left\{ \sum\limits_{l = 0}^{\infty} q^{nl} \left[ c_{10} g\left( -x+\mu+\mu_{10};1,\frac{\lambda}{n-2}\right) \right.\right.\\ && -e_{10} g\left( -x+T;1,\frac{\lambda}{n-2}\right) + I_{\{ r \geq 3\}} \sum\limits_{d=2}^{r-1}\sum\limits_{k=0}^{d-1} \left\{ c_{dk} g_{3}(x-\mu-\mu_{dk};d-1;\lambda d,\lambda_{dk}) \right. \\ &&\left. - e_{dk} g_{3}(x-T;d-1,\lambda d,\lambda_{dk}) \right\} + g_{1}(x-\mu;r-1,\lambda r,\lambda n)-q^{n}g_{1}(x-T;r-1,\lambda r,\lambda n) \\ &&\left.\left. + \sum\limits_{k=0}^{r-2} \left\{ c_{k} g_{3}(x-\mu-\mu_{k};r-1,\lambda r,\lambda_{k}) - e_{k}g_{3}(x-T;r-1,\lambda r,\lambda_{k}) \right\} \right] \right\} \ dx d\lambda d\mu. \end{array} $$

Define \( a_{dk} = \frac {d-k}{2d-k-n} \ \text {for} \ d = 2,3,, \dots ,r-1, \ k= 0,1,\dots ,d-1 \ \ni \ \lambda _{dk}= \lambda d a_{dk} \) and \( a_{k} = \frac {r-k-1}{2r-k-n-1} \ \text {for} \ k= 0,1,\dots ,r-1 \ \ni \ \lambda _{k}= \lambda r a_{k} \). Note that λdk > (<)0 ⇔ 2dkn > (<)0, \(\lambda _{dk} = \infty \iff 2d -k -n = 0\) and λk also behaves similarly. Therefore, define some sets as follows:

$$ \begin{array}{@{}rcl@{}} &&A_{0} = \{ (d,k) \ | \ d=2,3,\dots,r-1, k=0,1, \dots,d-1 \},\\ &&A_{1} = \{ (d,k) \ | \ (d,k) \in A_{0} \ \text{and} \ 2d-k-n > 0 \},\\ &&A_{2} = \{ (d,k) \ | \ (d,k) \in A_{0} \ \text{and} \ 2d-k-n < 0 \},\\ &&A_{3} = \{ (d,k) \ | \ (d,k) \in A_{0} \ \text{and} \ 2d-k-n = 0 \},\\ &&B_{0} = \{ k \ | \ k=0,1, \dots,r-2 \},\\ &&B_{1} = \{ k \ | \ k \in B_{0} \ \text{and} \ 2r-k-n-1 > 0 \},\\ &&B_{2} = \{ k \ | \ k \in B_{0} \ \text{and} \ 2r-k-n-1 < 0 \},\\ &&B_{3} = \{ k \ | \ k \in B_{0} \ \text{and} \ 2r-k-n-1 = 0 \}.\\ \end{array} $$

Now replace q, cdk, edk, ck, ek and g3 by their respective expressions to have

$$ \begin{array}{@{}rcl@{}} I_{ij} &= & \frac{1}{A} \sum\limits_{l=0}^{\infty} \left[ n(K_{l1}-K_{l2}) + I_{\{ r \geq 3\}} \left\{ \underset{A_1}{\sum\sum} (-1)^k \binom{n}{d} \binom{d}{k} (K_{l3}-K_{l4}) \right.\right.\\ &&\left. +\underset{A_2}{\sum\sum} (-1)^k \binom{n}{d} \binom{d}{k} (K_{l5}-K_{l6}) + \underset{A_3}{\sum\sum} (-1)^k \binom{n}{d} \binom{d}{k} (K_{l7}-K_{l8}) \right\} \\ && + (K_{l9}-K_{l10}) + \sum\limits_{B_1} (-1)^{k+1} r \binom{n}{r} \binom{r-1}{k} \frac{1}{n-r+k+1} (K_{l11}-K_{l12}) \\ && +\sum\limits_{B_2} (-1)^{k+1} r \binom{n}{r} \binom{r-1}{k} \frac{1}{n-r+k+1} (K_{l13}-K_{l14}) \\ && \left. + \sum\limits_{B_3} (-1)^{k+1} r \binom{n}{r} \binom{r-1}{k} \frac{1}{n-r+k+1} (K_{l15}-K_{l16}) \right], \end{array} $$

where \(K_{l1}, K_{l2},\dots , K_{l16}\) denotes some expressions involving triple integrals. Moreover these integrals can be obtained along the same line as Ml1 and Ml2 have been obtained, so their proofs have been omitted here.

$$ \begin{array}{@{}rcl@{}} K_{l1} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)-1} g(-x+\mu+\mu_{10};1,\lambda/(n-2)) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) {\int}_{0}^{\eta_1} \mu^{j} \left\{\frac{1}{\left( \beta-\gamma \mu + (n(l+1)-1)(T-\mu) \right)^{\alpha+i}} \right.\\ &&\left. - \frac{1}{\left( \beta-\gamma \mu + (n(l+1)-1)(T-\mu) - \frac{(\min\{\xi_{\mu}^{*}, \mu+\mu_{10}\}-\mu-\mu_{10})}{n-2} \right)^{\alpha+i}} \right\} \ d\mu, \\ K_{l2} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g(-x+T;1,\lambda/(n-2)) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) {\int}_{0}^{\eta_1} \mu^{j} \left\{\frac{1}{\left( \beta-\gamma \mu + n(l+1)(T-\mu) \right)^{\alpha+i}} \right.\\ && - \left.\frac{1}{\left( \beta-\gamma \mu + n(l+1)(T-\mu) - \frac{(\min\{\xi_{\mu}^{*}, T\}-T)}{n-2} \right)^{\alpha+i}} \right\} \ d\mu, \\ K_{l3} & = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)-d+k} g_1(x - \mu - \mu_{dk};d - 1,\lambda d, \lambda_{dk}) \ dx d\lambda d\mu \\ v&= & {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{d-2} R_{dks} D_{4}(d-s-1, \alpha+i, n(l+1)-d+k, \eta_1) + \frac{ 1 }{ (1-a_{dk})^{d-1} }\right. \\ && \left.\!\times\! {\int}_{0}^{\eta_1} \frac{ \mu^{j}}{ \left( \beta - \gamma \mu + (n(l + 1) - d + k)(T - \mu) + d a_{dk} (\max\{\xi, \mu+\mu_{dk}\}-\mu-\mu_{dk}) \right)^{\alpha+i } } d\mu \right\} \end{array} $$

where \(R_{dks} = (-1)^{s} \frac { a_{dk} }{ (a_{dk}-1)^{s+1} }\) and \(\xi _{4}^{*}(\mu ) = \frac {d(\max \limits \{\xi , \mu +\mu _{dk}\} - \mu - \mu _{dk})}{ \beta -\gamma \mu + (n(l+1)-d+k)(T-\mu ) }\),

$$ \begin{array}{@{}rcl@{}} K_{l4} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g_1(x-T;d-1,\lambda d, \lambda_{dk}) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{d-2} R_{dks} D_{5}(d-s-1, \alpha+i, n(l+1), \eta_1) \right. \\ &&\left. v + \frac{ 1 }{ (1-a_{dk})^{d-1} } {\int}_{0}^{\eta_1} \frac{ \mu^j }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) + d a_{dk} (\xi_{T}^{*}-T) \right)^{\alpha+i } } d\mu \right\} \end{array} $$

with \(\xi _{5}^{*}(\mu ) = \frac { d (\xi _{T}^{*}-T) }{(\beta -\gamma \mu + n(l+1)(T-\mu ))}\),

$$ \begin{array}{@{}rcl@{}} K_{l5} & = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{-\! \lambda (\beta-\gamma \mu)} q^{n(l + 1)-\!d+k} g_2(x - \mu - \mu_{dk};d - 1,\lambda d, - \lambda_{dk}) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha +i) \left[ \sum\limits_{s=0}^{d-2} R_{dks} D_4(d-s-1,\alpha+i,n(l+1)-d+k,\eta_1) + \frac{1}{(1-a_{dk})^{d-1}} \right. \\ && \times {\int}_{0}^{\eta_1} \mu^j \left\{ \frac{ 1 }{ \left( \beta-\gamma \mu + (n(l+1)-d+k)(T-\mu) \right)^{\alpha+i } } \right. \\ &&\left.\left. - \frac{ 1 }{ \left( \beta - \gamma \mu + (n(l + 1) - d + k)(T - \mu) + d a_{dk} (\min\{\xi_{\mu}^{*},\mu+\mu_{dk}\}-\mu-\mu_{dk}) \right)^{\alpha+i } }\right\} d\mu \right], \\ K_{l6} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g_2(x-T;d-1,\lambda d,- \lambda_{dk}) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha +i) \left[ \sum\limits_{s=0}^{d-2} R_{dks} D_5(d-s-1,\alpha+i,n(l+1),\eta_1) + \frac{1}{(1-a_{dk})^{d-1}} \right. \\ && \times {\int}_{0}^{\eta_1} \mu^j \left\{ \frac{ 1 }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) \right)^{\alpha+i } } \right. \\ &&\left.\left. - \frac{ 1 }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) + d a_{dk} (\min\{\xi_{\mu}^{*},T\}-T) \right)^{\alpha+i } }\right\} d\mu \right], \\ K_{l7} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty} \lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)-d+k} g(x-\mu-\mu_{dk};d-1,\lambda d) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) D_4(d-1,\alpha+i,n(l+1)-d+k,\eta_1), \\ K_{l8}& = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g(x-T;d-1,\lambda d) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) D_5(d-1,\alpha+i,n(l+1),\eta_1), \\ K_{l9} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{nl} g_1(x-\mu;r-1,\lambda r,\lambda n) \ dx d\lambda d\mu \\ &= & \left\{\begin{array}{lll} {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{r-2} R_{s} D_{6}(r-s-1, \alpha+i, nl, \eta_1)\right. \\ \left. + \frac{ 1 }{ (1-\frac{n}{r})^{r-1} } \int\limits_{0}^{\eta_1} \frac{ \mu^j }{ \left( \beta-\gamma \mu + nl(T-\mu) + n (\xi_{\mu}^{*}-\mu) \right)^{\alpha+i } } d\mu \right\}, & \text{if~} r<n \\ {\Gamma}(\alpha+i) D_6(r,\alpha+i,nl,\eta_1), & \text{if~} r=n. \end{array}\right. \end{array} $$

with \(\xi _{6}^{*}(\mu ) = \frac { r (\xi _{\mu }^{*}-\mu ) }{(\beta -\gamma \mu + nl(T-\mu ))}\) and \( R_{s} =(-1)^{s} \frac {n/r}{((n/r)-1)^{s+1}} \),

$$ \begin{array}{@{}rcl@{}} K_{l10} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g_1(x-T;r-1,\lambda r,\lambda n) \ dx d\lambda d\mu \\ &= & \left\{\begin{array}{lll} {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{r-2} R_{s} D_{7}(r-s-1, \alpha+i, n(l+1), \eta_1) \right.\\ \left.+ \frac{ 1 }{ (1-\frac{n}{r})^{r-1} } \int\limits_{0}^{\eta_1} \frac{ \mu^j }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) + n (\xi_T^{*}-T) \right)^{\alpha+i } } d\mu \right\}, & \text{if~} r<n \\ {\Gamma}(\alpha+i) D_7(r,\alpha+i,n(l+1),\eta_1), & \text{if~} r=n \end{array}\right. \end{array} $$

with \(\xi _{7}^{*}(\mu ) = \frac { r (\xi _{T}^{*}-T) }{(\beta -\gamma \mu + n(l+1)(T-\mu ))}\),

$$ \begin{array}{@{}rcl@{}} K_{l11} & = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)-r+k+1} g_1(x - \mu - \mu_{k};r - 1,\lambda r, \lambda_k) \ dx d\lambda d\mu \\ & = & \left\{\begin{array}{lll} {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{r-2} R_{ks} D_{8}(r-s-1, \alpha+i, n(l+1)-r+k+1, \eta_1) \right.\\ \left.\!+ \frac{ 1 }{ (1 - a_k)^{r - 1} } \int\limits_{0}^{\eta_1} \frac{ \mu^j }{ \left( \beta - \gamma \mu + (n(l + 1) - r + k + 1)(T - \mu) + r a_k (\max\{\xi, \mu + \mu_{k}\} - \mu - \mu_k) \right)^{\alpha + i } } d\mu \right\}, & \text{if~} r\!<\!n \\ {\Gamma}(\alpha+i) D_8(r,\alpha+i,n(l+1)-r+k+1,\eta_1), & \text{if~} r = n \end{array}\right. \end{array} $$

with \(\xi _{8}^{*}(\mu ) = \frac { r (\max \limits \{\xi , \mu +\mu _{k}\}-\mu -\mu _{k}) }{(\beta -\gamma \mu + (n(l+1)-r+k+1)(T-\mu ))}\),

$$ \begin{array}{@{}rcl@{}} K_{l12} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g_1(x-T;r-1,\lambda r, \lambda_k) \ dx d\lambda d\mu \\ &= & \left\{\begin{array}{lll} {\Gamma}(\alpha+i) \left\{ \sum\limits_{s=0}^{r-2} R_{ks} D_{9}(r-s-1, \alpha+i, n(l+1), \eta_1) \right.\\ \left.+ \frac{ 1 }{ (1-a_k)^{r-1} } \int\limits_{0}^{\eta_1} \frac{ \mu^j }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) + r a_k (\xi_T^{*}-T) \right)^{\alpha+i } } d\mu \right\}, & \text{if~} r<n \\ {\Gamma}(\alpha+i) D_9(r,\alpha+i,n(l+1),\eta_1), & \text{if~} r=n \end{array}\right. \end{array} $$

with \(\xi _{9}^{*}(\mu ) = \frac { r (\xi _{T}^{*}-T) }{(\beta -\gamma \mu + n(l+1)(T-\mu ))}\),

$$ \begin{array}{@{}rcl@{}} K_{l13} & = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta - \gamma \mu)} q^{n(l+1)-r+k + 1} g_2(x - \mu - \mu_{k};r - 1,\lambda r, - \lambda_k) \ dx d\lambda d\mu \end{array} $$
$$ \begin{array}{@{}rcl@{}} & = & {\Gamma}(\alpha + i) \left[ \sum\limits_{s=0}^{r-2} R_{ks} D_8(r - s - 1,\alpha + i,n(l + 1) - r+k+1,\eta_1) + \frac{1}{(1-a_{k})^{r-1}} \right.\\ && \!\times\! {\int}_{0}^{\eta_1} \mu^j \left\{ \left( \beta-\gamma \mu + (n(l+1)-r+k+1)(T-\mu) \right)^{-\alpha-i } \right.\\ && \left.\left.- \left( \beta-\gamma \mu + (n(l+1)-r+k+1)(T-\mu) + r a_{k} (\min\{\xi_{\mu}^{*},\mu+\mu_{k}\}\right.\right.\right.\\ &&\left.\left.\left.-\mu-\mu_{k}) \right)^{-\alpha-i } \right\} d\mu \right], \\ K_{l14} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g_2(x - T;r - 1,\lambda r,- \lambda_k) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha +i) \left[ \sum\limits_{s=0}^{r-2} R_{ks} D_9(r-s-1,\alpha+i,n(l+1),\eta_1) + \frac{1}{(1-a_{k})^{r-1}} \right. \\ && \times {\int}_{0}^{\eta_1} \mu^j \left\{ \frac{ 1 }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) \right)^{\alpha+i } } \right.\\ &&\left.\left. - \frac{ 1 }{ \left( \beta-\gamma \mu + n(l+1)(T-\mu) + r a_{k} (\min\{\xi_{\mu}^{*},T\}-T) \right)^{\alpha+i } }\right\} d\mu \right], \\ K_{l15} & = & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\!\lambda^{\alpha \!+i - 1} \mu^{j} e^{- \lambda (\beta-\!\gamma \mu)} q^{n(l + 1) - r + k + 1} g(x - \mu - \mu_{k};r - 1,\lambda r)\! \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) D_8(r-1,\alpha+i,n(l+1)-r+k+1,\eta_1) \ \text{and} \\ K_{l16} &= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} {\int}_{\xi_{\mu}^{*}}^{\infty}\lambda^{\alpha +i-1} \mu^{j} e^{- \lambda (\beta-\gamma \mu)} q^{n(l+1)} g(x-T;r-1,\lambda r) \ dx d\lambda d\mu \\ &= & {\Gamma}(\alpha+i) D_9(r-1,\alpha+i,n(l+1),\eta_1). \end{array} $$

Computation of \(E_{\lambda ,\mu }E_{\underline {X}|\lambda ,\mu }(\tau |\lambda ,\mu )\)

$$ \begin{array}{@{}rcl@{}} && E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu) \\ & =& {\int}_{\mu} {\int}_{\lambda} E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu) p(\lambda,\mu) d\lambda d\mu \\ & =&\frac{1}{A}{\int}_{0}^{\eta_1} {\int}_{0}^{\infty} E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu) \lambda^{\alpha-1} e^{- \lambda(\beta-\gamma \mu)} d\lambda d\mu \\ & =& \frac{1}{A}{\int}_{0}^{\eta_1} {\int}_{0}^{\infty} E_{\underline{X}|\lambda,\mu}\left[min\{X_{(r)},T\}|\lambda,\mu\right] \lambda^{\alpha-1} e^{- \lambda(\beta-\gamma \mu)} d\lambda d\mu \\ & =& \frac{1}{A}{\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \left\{ {\int}_{\mu}^{T} y f_{X_{(r)}}(y) dy +T P_{\underline{X}|\lambda,\mu}\left[0 \leq D \leq r-1|\lambda,\mu\right] \right\} \lambda^{\alpha-1} e^{- \lambda(\beta-\gamma \mu)} d\lambda d\mu\\ & =& \frac{1}{A} \sum\limits_{l=0}^{r-1} (-1)^{r-1-l} (n-r+1) \binom{n}{r-1} \binom{r-1}{l} \\ && \times \left[ \frac{1}{n-l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1} \mu e^{-\lambda (\beta- \gamma \mu)} d\lambda d\mu - \frac{T}{n-l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda (\beta+ (n-l)T - (\gamma + n - l) \mu)} d\lambda d\mu \right. \\ && \left. - \frac{1}{(n-l)^2} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-2} e^{-\lambda (\beta+ (n-l)T- (\gamma+ n-l) \mu)} d\lambda d\mu\right.\\ &&\left.+ \frac{1}{(n-l)^2} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-2} e^{-\lambda (\beta- \gamma \mu)} d\lambda d\mu \right] \\ && + \frac{T}{A} \sum\limits_{d=0}^{r-1} \sum\limits_{l=0}^{d} (-1)^{d-l} \binom{n}{d} \binom{d}{l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda (\beta+ (n-l)T- (\gamma+ n-l) \mu)} d\lambda d\mu \end{array} $$

Note that β + (nl)T − (γ + (nl))μ > 0. Hence all the integrals except \( {\int \limits }_{0}^{\eta _{1}} {\int \limits }_{0}^{\infty } \lambda ^{\alpha -2} exp(-\lambda (\beta + (n-l)T- (\gamma + n-l) \mu )) d\lambda d\mu \) and \( {\int \limits }_{0}^{\eta _{1}} {\int \limits }_{0}^{\infty } \lambda ^{\alpha -2} exp(-\lambda \) (βγμ))dλdμ exist for the entire range of hyper parameter α. These two integrals do not exist when 0 < α ≤ 1, so this range is excluded and the Bayes risk has been provided only when α > 1. Hence

$$ \begin{array}{@{}rcl@{}} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu) \!\!& = &\!\! \frac{1}{A} \sum\limits_{l=0}^{r-1} (-1)^{r-1-l} (n-r+1) \binom{n}{r-1} \binom{r-1}{l} \left[ \frac{1}{n-l} {\int}_{0}^{\eta_1} {\Gamma}(\alpha) \frac{\mu }{(\beta- \gamma \mu)^{\alpha}} d\mu \right. \\ && - \frac{T}{n-l} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha)}{(\beta+ (n-l)T- (\gamma+ n-l) \mu)^{\alpha}} d\mu \\ && - \frac{1}{(n-l)^2} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha-1)}{(\beta+ (n-l)T- (\gamma+ n-l) \mu)^{\alpha-1}} d\mu \\ &&\left. + \frac{1}{(n-l)^2} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha-1)}{(\beta- \gamma \mu)^{\alpha-1}} d\mu \right] \\ && + \frac{T}{A} \sum\limits_{d=0}^{r-1} \sum\limits_{l=0}^{d} (-1)^{d-l} \binom{n}{d} \binom{d}{l} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha)}{(\beta+ (n-l)T- (\gamma+ n-l) \mu)^{\alpha}} d\mu. \end{array} $$
(A.2)

Now there are two cases:

Case (1)::

When α≠ 2, Eq. A.2 is given by

$$ \begin{array}{@{}rcl@{}} && E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu} (\tau|\lambda,\mu) = \frac{1}{A} \sum\limits_{l=0}^{r-1} (-1)^{r-l-1} (n-r+1) \binom{n}{r-1} \binom{r-1}{l} \left\{ \frac{\beta ~ {\Gamma}(\alpha -1)}{(n-l)\gamma^2} \right.\\ &&\times \left( \frac{\beta^{\alpha-1}-{(\beta-\gamma \eta_1)}^{\alpha-1}}{\beta^{\alpha-1}{(\beta-\gamma \eta_1)}^{\alpha-1}} \right) - \frac{(\alpha-1) ~ {\Gamma}(\alpha -2)}{(n-l)\gamma^2} \left( \frac{\beta^{\alpha-2}-{(\beta-\gamma \eta_1)}^{\alpha-2}}{\beta^{\alpha-2}{(\beta-\gamma \eta_1)}^{\alpha-2}} \right)\\ && - \frac{T ~ {\Gamma}{(\alpha -1)}}{(n-l) (\gamma+n-l)} \left( \frac{(\beta+(n-l)T)^{\alpha-1}-{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-1}}{(\beta+(n-l)T)^{\alpha-1}{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-1}} \right) \\ && - \frac{ {\Gamma}{(\alpha -2)}}{(n-l)^2 (\gamma+n-l)} \left( \frac{(\beta+(n-l)T)^{\alpha-2}-{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-2}}{(\beta+(n-l)T)^{\alpha-2}{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-2}} \right) \\ &&\left. +\frac{\Gamma{(\alpha -2)}}{(n-l)^2 \gamma} \left( \frac{\beta^{\alpha-2}-{(\beta-\gamma \eta_1)}^{\alpha-2}}{\beta^{\alpha-2}{(\beta-\gamma \eta_1)}^{\alpha-2}} \right) \right\}+ \frac{T}{A} \sum\limits_{d=0}^{r-1} \sum\limits_{l=0}^{d} (-1)^{d-l} \binom{n}{d} \binom{d}{l} \frac{\Gamma{(\alpha -1)}}{(\gamma+n-l)} \\ && \times \left\{ \frac{(\beta+(n-l)T)^{\alpha-1}-{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-1}}{(\beta+(n-l)T)^{\alpha-1}{(\beta+(n-l)T-\eta_1(\gamma+n-l))}^{\alpha-1}} \right\}. \end{array} $$
Case (2)::

When α = 2, simplifying Eq. A.2 further the following expression is obtained:

$$ \begin{array}{@{}rcl@{}} && E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu} (\tau|\lambda,\mu)= \frac{1}{A} \sum\limits_{l=0}^{r-1} (-1)^{r-l-1} (n-r+1) \binom{n}{r-1} \binom{r-1}{l} \left\{ \frac{\eta_1}{ (n-l) \gamma (\beta - \gamma \eta_1)}\right. \\ && - \frac{ln(\beta)-ln(\beta - \gamma \eta_1)}{(n-l) \gamma^2 } - \frac{T}{(n-l)} \left( \frac{\eta_1}{(\beta+(n-l)T){(\beta+(n-l)T-\eta_1(\gamma+n-l))}} \right) \\ &&\left. - \frac{ln(\beta+(n-l)T)-ln(\beta+(n-l)T-\eta_1(\gamma+n-l))}{(n-l)^2 (\gamma+n-l)} + \frac{ln(\beta)-ln(\beta-\gamma \eta_1)}{(n-l)^2 \gamma} \right\} \\ && + \frac{T}{A} \sum\limits_{d=0}^{r-1} \sum\limits_{l=0}^{d} (-1)^{d-l} \binom{n}{d} \binom{d}{l} \left\{\frac{\eta_1}{(\beta+(n-l)T){(\beta+(n-l)T-\eta_1(\gamma+n-l))}} \right\}. \end{array} $$

Computation of \(E_{\lambda ,\mu }E_{\underline {X}|\lambda ,\mu }(D|\lambda ,\mu )\)

$$ \begin{array}{@{}rcl@{}} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu)&= & {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) p(\lambda,\mu) d\lambda d\mu \\ &= & \frac{1}{A} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \left\{ \sum\limits_{d=0}^{r-1} d \binom{n}{d} e^{- \lambda (n-d)(T-\mu)} {\left( 1- e^{- \lambda(T-\mu)} \right)}^d \right. \\ &&\left. + r \sum\limits_{k=r}^{n} \binom{n}{k} e^{- \lambda (n-k)(T-\mu)} {\left( 1- e^{- \lambda(T-\mu)} \right)}^k \right\} \lambda^{\alpha-1} e^{- \lambda(\beta -\gamma \mu)} d\lambda d\mu \\ &= & \frac{1}{A} \sum\limits_{d=0}^{r-1} \sum\limits_{l=0}^{d} (-1)^{d-l} d \binom{n}{d} \binom{d}{l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1}e^{-\lambda \left[\beta+(n-l)T -(\gamma +n-l)\mu\right]} d\lambda d\mu \\ && + \frac{r}{A} \sum\limits_{k=r}^{n} \sum\limits_{l=0}^{k} (\!-1)^{k-l} \binom{n}{k} \binom{k}{l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda \left[\beta+(n-l)T -(\gamma +n-l)\mu\right]} d\lambda d\mu\\ && = \frac{1}{A} \sum\limits_{d=0}^{n} \sum\limits_{l=0}^{d} (- 1)^{d-l} m \binom{n}{d} \binom{d}{l} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha - 1}e^{-\!\lambda \left[\beta+(n\!-l)T \!-(\gamma +n-l)\mu\right]} d\lambda d\mu \end{array} $$

where \(m=\min \limits \{d,r\}\). Hence

$$ \begin{array}{@{}rcl@{}} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) & =&\frac{1}{A} \sum\limits_{d=0}^{n} \sum\limits_{l=0}^{d} (-1)^{d-l} m \binom{n}{d} \binom{d}{l} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha)}{(\beta+ (n-l)T- (\gamma+ n-l) \mu)^{\alpha}} d\mu \\ && =\frac{1}{A} \sum\limits_{d=0}^{n} \sum\limits_{l=0}^{d} (-1)^{d-l} m \binom{n}{d} \binom{d}{l} \frac{\Gamma(\alpha-1)}{\gamma +n-l} \\ &&\times \left\{ \frac{(\beta+(n-l)T)^{\alpha-1}-(\beta+(n-l)T-(\gamma +n-l)\eta_1)^{\alpha-1}}{(\beta+(n-l)T)^{\alpha-1} (\beta+(n-l)T-(\gamma +n-l)\eta_1 )^{\alpha-1}}\right\} \end{array} $$

Computation of E λ, μ(e nλ(Tμ))

$$ \begin{array}{@{}rcl@{}} E_{\lambda,\mu}(e^{-n \lambda (T-\mu)}) &=& {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} e^{-n \lambda(T-\mu)} p(\lambda,\mu) d\lambda d\mu \\ & =& \frac{1}{A}{\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha-1} e^{- \lambda(\beta+nT- (n+\gamma) \mu ) } d\lambda d\mu \\ & =& \frac{1}{A}{\int}_{0}^{\eta_1} \frac{\Gamma(\alpha)}{(\beta +nT - (n+\gamma) \mu )^{\alpha}} d\mu \\ & = &\frac{1}{A} \frac{\Gamma{(\alpha - 1)}}{n + \gamma} \left\{ \frac{(\beta + nT)^{\alpha-1} - {(\beta+nT-(n+\gamma) \eta_1)}^{\alpha-1}}{(\beta + nT)^{\alpha-1}{(\beta+nT-(n+\gamma) \eta_1)}^{\alpha-1}} \right\} \end{array} $$

Computation of ∑1≤i+j≤ 2 C ij E λ, μ(λ i μ j e nλ(Tμ))

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}(\lambda^i \mu^j e^{-n \lambda (T-\mu)}) \\ &=& \sum\limits_{1 \leq i+j \leq 2} C_{ij} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^i \mu^j e^{-n \lambda (T-\mu)} p(\lambda,\mu) d\lambda d\mu \\ & =& \frac{1}{A}\sum\limits_{1 \leq i+j \leq 2} C_{ij} {\int}_{0}^{\eta_1} {\int}_{0}^{\infty} \lambda^{\alpha+i-1} \mu^j e^{- \lambda (\beta+nT- (n+\gamma) \mu ) } d\lambda d\mu\\ & = &\frac{1}{A}\sum\limits_{1 \leq i+j \leq 2} C_{ij} {\int}_{0}^{\eta_1} \frac{\Gamma(\alpha+i) }{(\beta+nT-(n+\gamma )\mu)^{\alpha+i}} \mu^j d\mu \\ & =& \frac{1}{A} \sum\limits_{1 \leq i+j \leq 2} C_{ij} \frac{\Gamma(\alpha+i)}{(\beta+nT)^{\alpha+i}} {\int}_{0}^{\frac{(n+\gamma ) \eta_1}{\beta+nT}} {\left( \frac{\beta+nT}{(n+\gamma )}\right)}^{j+1} \frac{u^j}{(1-u)^{\alpha+i}} du \\ & =& \frac{1}{A} \sum\limits_{1 \leq i+j \leq 2} C_{ij} \frac{\Gamma(\alpha+i)}{(n+\gamma )^{j+1}(\beta+nT)^{\alpha+i-j-1}} {\int}_{0}^{\eta*} \frac{u^j}{(1-u)^{\alpha+i}} du \\ &=& C_{01} \frac{\Gamma(\alpha)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-2}} {\int}_{0}^{\eta*} \frac{u}{(1-u)^{\alpha}} du \\&&+ C_{10} \frac{\Gamma(\alpha+1)}{A (n+\gamma ) (\beta+nT)^{\alpha}} {\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha+1}} du \\ && + C_{11} \frac{\Gamma(\alpha+1)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-1}} {\int}_{0}^{\eta*} \frac{u}{(1-u)^{\alpha+1}} du \\&&+C_{20} \frac{\Gamma(\alpha+2)}{A (n+\gamma ) (\beta+nT)^{\alpha+1}}\times {\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha+2}} du \\&&+ C_{02} \frac{\Gamma(\alpha)}{A (n+\gamma )^3 (\beta+nT)^{\alpha-3}} {\int}_{0}^{\eta*} \frac{u^2}{(1-u)^{\alpha}} du, \end{array} $$

where \( \eta *= \frac {(n+\gamma )\eta _{1}}{\beta +nT} \) and since \({\int \limits }_{0}^{\eta *} \frac {u}{(1-u)^{p}} du = -{\int \limits }_{0}^{\eta *} \frac {1}{(1-u)^{p-1}} du+{\int \limits }_{0}^{\eta *} \frac {1}{(1-u)^{p}} du\) and \({\int \limits }_{0}^{\eta *} \frac {u^{2}}{(1-u)^{p}} du ={\int \limits }_{0}^{\eta *} \frac {1}{(1-u)^{p}} du+{\int \limits }_{0}^{\eta *} \frac {1}{(1-u)^{p-2}} du- 2{\int \limits }_{0}^{\eta *} \frac {1}{(1-u)^{p-1}} du\). Therefore,

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}(\lambda^i \mu^j e^{-n \lambda (T-\mu)}) \\ && = C_{01} \frac{\Gamma(\alpha)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-2}} \left\{ -{\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha-1}} du+{\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha}} du \right\} \\ && + C_{10} \frac{\Gamma(\alpha + 1)}{A (n + \gamma ) (\beta + nT)^{\alpha}} {\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha+1}} du + C_{11} \frac{\Gamma(\alpha+1)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-1}} \\ && \times \left\{ - {\int}_{0}^{\eta*} \frac{1}{(1 - u)^{\alpha}} du +{\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha+1}} du \right\} +C_{20} \frac{\Gamma(\alpha+2)}{A (n+\gamma ) (\beta+nT)^{\alpha+1}} \\ && \times {\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha+2}} du + C_{02} \frac{\Gamma(\alpha)}{A (n+\gamma )^3 (\beta+nT)^{\alpha-3}} \times \left\{ {\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha}} du \right. \\ &&\left. +{\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha-2}} du - 2{\int}_{0}^{\eta*} \frac{1}{(1-u)^{\alpha-1}} du \right\}. \end{array} $$

Case (1): Thus when α∉{2,3}, we get,

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}(\lambda^i \mu^j e^{-n \lambda (T-\mu)}) \\ && = C_{01} \frac{\Gamma(\alpha)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-2}} \left\{ -\frac{1}{\alpha-2} \left( \frac{1}{(1-\eta^{*})^{\alpha-2}} -1 \right) + \frac{1}{\alpha-1} \left( \frac{1}{(1-\eta^{*})^{\alpha-1}} - 1 \right) \right\}\\ &&+ C_{10} \frac{\Gamma(\alpha+1)}{A (n+\gamma ) (\beta+nT)^{\alpha}} \frac{1}{\alpha} \left( \frac{1}{(1-\eta^{*})^{\alpha}} -1 \right) + C_{11} \frac{\Gamma(\alpha+1)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-1}} \\ &&\times \left\{ - \frac{1}{\alpha-1} \left( \frac{1}{(1-\eta^{*})^{\alpha-1}} -1 \right) + \frac{1}{\alpha} \left( \frac{1}{(1-\eta^{*})^{\alpha}} -1 \right) \right\} +C_{20} \frac{\Gamma(\alpha+2)}{A (n+\gamma ) (\beta+nT)^{\alpha+1}} \\ &&\times \frac{1}{\alpha+1} \left( \frac{1}{(1-\eta^{*})^{\alpha+1}} -1 \right) + C_{02} \frac{\Gamma(\alpha)}{A (n+\gamma )^3 (\beta+nT)^{\alpha-3}} \left\{ \frac{1}{\alpha-1} \left( \frac{1}{(1-\eta^{*})^{\alpha-1}} -1 \right) \right. \\ &&\left. + \frac{1}{\alpha-3} \left( \frac{1}{(1-\eta^{*})^{\alpha-3}} -1 \right) - 2 \frac{1}{\alpha-2} \left( \frac{1}{(1-\eta^{*})^{\alpha-2}} -1 \right) \right\} \\ & =& \frac{\Gamma(\alpha-1)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-3}} \left( \frac{C_{01}}{\beta+nT}- \frac{C_{11} \alpha}{(\beta+nT)^2} + \frac{C_{02}}{(n+\gamma )}\right) \left( \frac{1}{(1-\eta^{*})^{\alpha-1}}-1 \right) \\ && - \frac{(\alpha-1){\Gamma}(\alpha-2)}{A (n+\gamma )^2 (\beta+nT)^{\alpha-3}} \left( \frac{C_{01}}{\beta+nT}- \frac{2C_{02}}{(n+\gamma )}\right) \left( \frac{1}{(1-\eta^{*})^{\alpha-2}}-1 \right) \\ && + \frac{C_{02} {\Gamma}(\alpha) }{A (\alpha-3)(n+\gamma )^3 (\beta+nT)^{\alpha-3}} \left( \frac{1}{(1-\eta^{*})^{\alpha-3}}-1 \right) + \frac{\Gamma(\alpha)}{A (n+\gamma ) (\beta+nT)^{\alpha-1}} \\ &&\times \left( \frac{C_{10}}{\beta+nT}+ \frac{C_{11}}{(n+\gamma )}\right) \left( \frac{1}{(1-\eta^{*})^{\alpha}}-1 \right) + \frac{C_{20}{\Gamma}(\alpha+1)}{A (n+\gamma ) (\beta+nT)^{\alpha+1}} \left( \frac{1}{(1-\eta^{*})^{\alpha+1}}-1 \right), \end{array} $$

Case (2): when α = 2.

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}(\lambda^i \mu^j e^{-n \lambda (T-\mu)}) \\ & =& C_{01} \frac{\Gamma(2)}{A (n+\gamma )^2 } \left\{ ln(1- \eta^{*})+ \left( \frac{1}{(1-\eta^{*})} -1 \right) \right\} + C_{10} \frac{\Gamma(3)}{2 A (n+\gamma ) (\beta+nT)^{2}} \left( \frac{1}{(1-\eta^{*})^2} -1 \right) \\ && + C_{11} \frac{\Gamma(3)}{A (n+\gamma )^2 (\beta+nT)} \left\{ - \left( \frac{1}{(1-\eta^{*})} -1 \right) +\frac{1}{2} \left( \frac{1}{(1-\eta^{*})^2} -1 \right) \right\} \\ && + C_{20} \frac{\Gamma(4)}{A (n+\gamma ) (\beta+nT)^3} \frac{1}{3} \left( \frac{1}{(1-\eta^{*})^3} -1 \right) + C_{02} \frac{\Gamma(2)}{A (n+\gamma )^3 (\beta+nT)^{-1}} \\ && \times \left\{ \left( \frac{1}{(1-\eta^{*})} -1 \right) +\eta^{*} +2 ln(1-\eta^{*}) \right\} \\ & =& \frac{1}{A (n+\gamma )^2 } \left( C_{01}- \frac{2C_{11}}{\beta+nT}+\frac{C_{02} (\beta+nT)}{(n+\gamma )} \right) \left( \frac{\eta^{*}}{1-\eta^{*}} \right) + \frac{1}{A (n+\gamma )^2 } \left( C_{01} + \frac{2C_{02}(\beta+nT)}{(n+\gamma )} \right) \\ && \times ln(1-\eta^{*}) + \frac{1}{A (n+\gamma ) (\beta+nT)} \left( \frac{C_{10}}{\beta+nT} + \frac{C_{11}}{(n+\gamma )} \right) \left( \frac{1}{(1-\eta^{*})^2} -1 \right) \\ && + \frac{2C_{20}}{A (n+\gamma ) (\beta+nT)^3} \left( \frac{1}{(1-\eta^{*})^3} -1 \right) + \frac{C_{02} (\beta+nT)}{A (n+\gamma )^3} \eta^{*}, \end{array} $$

Case (3): and when α = 3.

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{1 \leq i+j \leq 2} C_{ij} E_{\lambda,\mu}(\lambda^i \mu^j e^{-n \lambda (T-mu)}) \\ & =& C_{01} \frac{\Gamma(3)}{A (n+\gamma )^2 (\beta+nT)} \left\{ - \left( \frac{1}{(1-\eta^{*})} -1 \right) + \frac{1}{2} \left( \frac{1}{(1-\eta^{*})^{2}} -1 \right) \right\} \\ && + C_{10} \frac{\Gamma(4)}{A (n+\gamma ) (\beta+nT)^{3}} \frac{1}{3} \left( \frac{1}{(1-\eta^{*})^{3}} -1 \right) + C_{11} \frac{\Gamma(4)}{A (n+\gamma )^2 (\beta+nT)^{2}} \\ &&\times \left\{ - \frac{1}{2} \left( \frac{1}{(1-\eta^{*})^{2}} -1 \right)+ \frac{1}{3} \left( \frac{1}{(1-\eta^{*})^{3}} -1 \right) \right\} +C_{20} \frac{\Gamma(5)}{A (n+\gamma ) (\beta+nT)^{4}} \\ && \times \frac{1}{4} \left( \frac{1}{(1-\eta^{*})^{4}} -1 \right) + C_{02} \frac{\Gamma(3)}{A (n+\gamma )^3 } \left\{ \frac{1}{2} \left( \frac{1}{(1-\eta^{*})^{2}} -1 \right)- ln(1-\eta^{*}) - 2 \left( \frac{1}{(1-\eta^{*})} -1 \right) \right\} \\ & = &\frac{1}{A (n+\gamma )^2 } \left( \frac{C_{01}}{\beta+nT} -\frac{3C_{11}}{(\beta+nT)^2}+\frac{C_{02}}{(n+\gamma )} \right)\left( \frac{1}{(1-\eta^{*})^{2}} -1 \right) - \frac{1}{A (n+\gamma )^2 } \left( \frac{2C_{01}}{\beta+nT} \right. \\ &&\left. +\frac{C_{02}}{(n+\gamma )} \right) \left( \frac{\eta^{*}}{1-\eta^{*}}\right) +\frac{2}{A (n+\gamma ) (\beta+nT)^2 } \left( \frac{C_{10}}{\beta+nT} -\frac{C_{11}}{(n+\gamma )} \right)\left( \frac{1}{(1-\eta^{*})^{3}} -1 \right) \\ && + \frac{6C_{20}}{A (n+\gamma ) (\beta+nT)^4} \left( \frac{1}{(1-\eta^{*})^4} -1 \right) - \frac{2C_{02}}{A (n+\gamma )^3} ln(1-\eta^{*}). \end{array} $$

Appendix B: Proof of Theorem 4.1

Suppose (0,0,0,0) denotes the sampling plan which accepts the lot without sampling (n = 0 or 1). It is easy to verify from the Eq. A.1 that the corresponding Bayes risk

$$ \begin{array}{@{}rcl@{}} r(0,0,0,0)= \sum\limits_{0 \leq i+j \leq 2}C_{ij} E_{\lambda,\mu}\left( \lambda^{i} \mu^{j}\right), \end{array} $$

for expressions of the required moments, see Lam (1990). Similarly if (0,0,0, \(\infty )\) denotes the sampling plan which rejects the lot without sampling (n = 0), then the corresponding Bayes risk \(r(0,0,0,\infty )\) will be Cr. Obviously the Bayes risk corresponding to the optimal Bayesian sampling plan satisfies the inequality

$$ \begin{array}{@{}rcl@{}} && r(n_{0},r_{0},T_{0},\xi_{0}) \leq \min\{ r(0,0,0,0),r(0,0,0,\infty)\} \\ && \Rightarrow r(n_{0},r_{0},T_{0},\xi_{0}) \leq \min\left\{\sum\limits_{0 \leq i+j \leq 2}C_{ij} E_{\lambda,\mu}\left( \lambda^{i} \mu^{j}\right),C_{r}\right\} \end{array} $$
(A.3)

Also, by Eq. A.1

$$ \begin{array}{@{}rcl@{}} r(n_{0},r_{0},T_{0},\xi_{0}) &= & n_{0}(C_{s}-r_{s})+C_{T} E_{\lambda,\mu}E_{\underline{}|\lambda,\mu}(\tau|\lambda,\mu)+ r_{s} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) + C_{r}\\ && + E_{\lambda,\mu} E_{\underline{X}|\lambda,\mu} \left[\delta(\underline{X})\left( \sum\limits_{0 \leq i+j \leq 2}{C_{ij} \lambda^{i} \mu^{j}}-C_{r}\right)\right] \\ &= & n_{0}(C_{s}-r_{s})+C_{T} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(\tau|\lambda,\mu)+ r_{s} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}(D|\lambda,\mu) \\ && + C_{r} E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}\left( 1- \delta(\underline{X}) \right) + E_{\lambda,\mu}E_{\underline{X}|\lambda,\mu}\left[\delta(\underline{X})\left( \sum\limits_{0 \leq i+j \leq 2}{C_{ij} \lambda^{i} \mu^{j}}\right)\right] \end{array} $$

In the right hand side of above equation, leaving out the first term, all others are positive terms. Therefore

$$ \begin{array}{@{}rcl@{}} r(n_{0},r_{0},T_{0},\xi_{0}) \geq n_{0}(C_{s}-r_{s}). \end{array} $$
(A.4)

Hence Eqs. A.3 and A.4 together imply the first result and of course we have 1 ≤ r0n0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapat, K., Koley, A., Mitra, S. et al. An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring. Sankhya A 85, 512–539 (2023). https://doi.org/10.1007/s13171-021-00263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-021-00263-2

Keywords

AMS (2000) subject classification

Navigation