Aiello, W., Chung, F. and Lu, L. (2000). A random graph model for massive graphs, In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of computing. ACM, p. 171–180.
Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.
MathSciNet
MATH
Google Scholar
Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X. and Marathe, M.V. (2008). Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks, In SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE, p. 1–12.
Benaych-Georges, F., Bordenave, C., Knowles, A. et al. (2019). Largest eigenvalues of sparse inhomogeneous erdős–rényi graphs. Ann. Probab.47, 1653–1676.
MathSciNet
MATH
Google Scholar
Bengtsson, L., Gaudart, J., Lu, X., Moore, S., Wetter, E., Sallah, K., Rebaudet, S. and Piarroux, R. (2015). Using mobile phone data to predict the spatial spread of cholera. Sci. Rep. 5, 8923.
Google Scholar
Bhadra, S., Chakraborty, K., Sengupta, S. and Lahiri, S. (2019). A bootstrap-based inference framework for testing similarity of paired networks. arXiv:1911.06869.
Bickel, P.J. and Chen, A. (2009). A nonparametric view of network models and Newman–Girvan and other modularities. Proc. Natl. Acad. Sci. 106, 21068–21073.
MATH
Google Scholar
Bickel, P.J. and Sarkar, P. (2016). Hypothesis testing for automated community detection in networks. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 78, 253–273.
MathSciNet
MATH
Google Scholar
Bordenave, C., Benaych-Georges, F. and Knowles, A (2020). Spectral radii of sparse random matrices. Ann. l’Inst. Henri Poincare (B) Probab. Stat.
Brauer, F. and Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology, vol. 2. Springer, Berlin.
MATH
Google Scholar
Castellano, C. and Pastor-Satorras, R. (2020). Cumulative merging percolation and the epidemic transition of the susceptible-infected-susceptible model in networks. Phys. Rev. X 10, 011070.
Google Scholar
Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J. and Faloutsos, C. (2008). Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur.10, 1–26.
Google Scholar
Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A.P., Mu, K., Rossi, L., Sun, K. et al. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 368, 6489, 395–400.
Google Scholar
Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99, 15879–15882.
MathSciNet
MATH
Google Scholar
Chung, F. and Radcliffe, M. (2011). On the spectra of general random graphs. Electron. J. Combinator. 18, P215–P215.
MathSciNet
MATH
Google Scholar
Chung, F., Lu, L. and Vu, V. (2003). Eigenvalues of random power law graphs. Ann. Combinator. 7, 21–33.
MathSciNet
MATH
Google Scholar
Colizza, V. and Vespignani, A. (2007). Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99, 148701.
Google Scholar
Dallas, T.A., Krkošek, M. and Drake, J.M. (2018). Experimental evidence of a pathogen invasion threshold. R. Soc. Open Sci. 5, 171975.
Google Scholar
Decreusefond, L., Dhersin, J. -S., Moyal, P., Tran, V.C. et al. (2012). Large graph limit for an sir process in random network with heterogeneous connectivity. Ann. Appl. Probab. 22, 541–575.
MathSciNet
MATH
Google Scholar
Eubank, S., Guclu, H., Kumar, V.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z. and Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184.
Google Scholar
Galvani, A.P. and May, R.M. (2005). Dimensions of superspreading. Nature 438, 293–295.
Google Scholar
Ghoshdastidar, D. and von Luxburg, U. (2018). Practical methods for graph two-sample testing, In Advances in Neural Information Processing Systems, p. 3019–3028.
Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S. and Moreno, Y. (2010). Discrete-time markov chain approach to contact-based disease spreading in complex networks. EPL (Europhys. Lett.) 89, 38009.
Google Scholar
Handcock, M.S., Raftery, A.E. and Tantrum, J.M. (2007). Model-based clustering for social networks. J. R. Stat. Soc.: Ser. A 170, 301–354.
MathSciNet
Google Scholar
Hethcote, H.W. (2000). The mathematics of infectious diseases. SIAM Rev. 42, 599–653.
MathSciNet
MATH
Google Scholar
Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables, In The Collected Works of Wassily Hoeffding. Springer, p. 409–426.
Hoff, P.D., Raftery, A.E. and Handcock, M.S. (2002). Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97, 1090–1098.
MathSciNet
MATH
Google Scholar
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X. et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.
Google Scholar
Karrer, B., Newman, M.E. and Zdeborová, L. (2014). Percolation on sparse networks. Phys. Rev. Lett. 113, 20, 208702.
Google Scholar
Keeling, M. (2005). The implications of network structure for epidemic dynamics. Theor. Popul. Biol. 67, 1–8.
MATH
Google Scholar
Kermack, W.O. and McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A, Containing papers of a mathematical and physical character 115, 700–721.
MATH
Google Scholar
Kermack, W.O. and McKendrick, A.G. (1932). Contributions to the mathematical theory of epidemics. ii.—the problem of endemicity. Proc. R. Soc. Lond. Ser. A, Containing papers of a mathematical and physical character 138, 55–83.
MATH
Google Scholar
Kermack, W.O. and McKendrick, A.G. (1933). Contributions to the mathematical theory of epidemics. iii.—further studies of the problem of endemicity. Proc. R. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character 141, 94–122.
MATH
Google Scholar
Komolafe, T., Quevedo, A.V., Sengupta, S. and Woodall, W.H. (2019). Statistical evaluation of spectral methods for anomaly detection in static networks. Netw. Sci. 7, 319–352.
Google Scholar
Kramer, A.M., Pulliam, J.T., Alexander, L.W., Park, A.W., Rohani, P. and Drake, J.M. (2016). Spatial spread of the west africa ebola epidemic. R. Soc. Open Sci. 3, 8, 160294.
Google Scholar
Krivitsky, P.N., Handcock, M.S., Raftery, A.E. and Hoff, P.D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Netw. 31, 204–213.
Google Scholar
Leitch, J., Alexander, K.A. and Sengupta, S. (2019). Toward epidemic thresholds on temporal networks: a review and open questions. Appl. Netw. Sci. 4, 105.
Google Scholar
Lezaud, P. (1998). Chernoff-type bound for finite markov chains. Ann. Appl. Probab. 8, 3, 849–867.
MathSciNet
MATH
Google Scholar
Meyers, L.A., Pourbohloul, B., Newman, M., Skowronski, D.M. and Brunham, R.C. (2005). Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232, 71–81.
MathSciNet
MATH
Google Scholar
Newman, M.E.J. (2002). Spread of epidemic disease on networks. Phys. Rev. E 66, 1, 016128.
MathSciNet
Google Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979.
MathSciNet
Google Scholar
Pinar, A., Seshadhri, C. and Kolda, T.G. (2012). The similarity between stochastic Kronecker and Chung-lu graph models, In Proceedings of the 2012 SIAM International Conference on Data Mining. SIAM, p. 1071–1082.
Pourbohloul, B., Meyers, L., Skowronski, D., Krajden, M., Patrick, D. and Brunham, R. (2005). Modeling control strategies of respiratory pathogens. Emerg. Infect. Dis. 11, 1249–56.
Google Scholar
Prakash, B.A., Chakrabarti, D., Faloutsos, M., Valler, N. and Faloutsos, C. (2010). Got the flu (or mumps)? Check the Eigenvalue! arXiv:1004.0060.
Rocha, L.E.C., Liljeros, F. and Holme, P. (2011). Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109.
Google Scholar
Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39, 1878–1915.
MathSciNet
MATH
Google Scholar
Sengupta, S. (2018). Anomaly detection in static networks using egonets. arXiv:1807.089251807.08925.
Sengupta, S. and Chen, Y. (2015). Spectral clustering in heterogeneous networks. Stat. Sin. 25, 1081–1106.
MathSciNet
MATH
Google Scholar
Sengupta, S. and Chen, Y. (2018). A block model for node popularity in networks with community structure. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 80, 365–386.
MathSciNet
MATH
Google Scholar
Shulgin, B., Stone, L. and Agur, Z. (1998). Pulse vaccination strategy in the sir epidemic model. Bull. Math. Biol. 60, 1123–1148.
MATH
Google Scholar
Sun, K., Chen, J. and Viboud, C. (2020). Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit. Health 2, 4, e201–e208.
Google Scholar
Tang, M., Athreya, A., Sussman, D.L., Lyzinski, V., Park, Y. and Priebe, C.E. (2017a). A semiparametric two-sample hypothesis testing problem for random graphs. J. Comput. Graph. Stat. 26, 344–354.
MathSciNet
MATH
Google Scholar
Tang, M., Athreya, A., Sussman, D.L., Lyzinski, V. and Priebe, C.E. (2017b). A nonparametric two-sample hypothesis testing problem for random graphs. Bernoulli 23, 1599–1630.
MathSciNet
MATH
Google Scholar
Van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.
MathSciNet
MATH
Google Scholar
Wallinga, J., Heijne, J.C. and Kretzschmar, M. (2005). A measles epidemic threshold in a highly vaccinated population. PLoS Med. 2, e316.
Google Scholar
Wang, Y.R. and Bickel, P.J. (2017). Likelihood-based model selection for stochastic block models. Ann. Stat. 45, 500–528.
MathSciNet
MATH
Google Scholar
Wang, Y., Chakrabarti, D., Wang, C. and Faloutsos, C. (2003). Epidemic spreading in real networks: an eigenvalue viewpoint, In 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings. IEEE Computer Society, Florence, p. 25–34.
Wang, W., Liu, Q.H., Zhong, L.F. et al. (2016). Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci. Rep. 6, 24676. https://doi.org/10.1038/srep24676.
Google Scholar
Wang, W., Tang, M., Stanley, H.E. and Braunstein, L.A. (2017). Unification of theoretical approaches for epidemic spreading on complex networks. Rep. Progr. Phys. 80, 036603.
Google Scholar
Wang, C., Horby, P.W., Hayden, F.G. and Gao, G.F. (2020). A novel coronavirus outbreak of global health concern. Lancet 395, 470–473.
Google Scholar
Woolhouse, M.E.J., Dye, C., Etard, J.F., Smith, T., Charlwood, J.D., Garnett, G.P., Hagan, P., Hii, J.L.K., Ndhlovu, P.D., Quinnell, R.J., Watts, C.H., Chandiwana, S.K. and Anderson, R.M. (1997). Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Natl. Acad. Sci. 94, 338–342.
Google Scholar
Yan, X., Shalizi, C., Jensen, J.E., Krzakala, F., Moore, C., Zdeborová, L., Zhang, P. and Zhu, Y. (2014). Model selection for degree-corrected block models. J. Stat. Mech.: Theory Exp. 2014, P05007.
Google Scholar
Zhang, X., Moore, C. and Newman, M.E. (2017). Random graph models for dynamic networks. Eur. Phys. J. B 90, 200.
MathSciNet
Google Scholar
Zhao, Y., Levina, E. and Zhu, J. (2012). Consistency of community detection in networks under degree-corrected stochastic block models. Ann. Stat. 40, 2266–2292.
MathSciNet
MATH
Google Scholar
Zhao, M.J., Driscoll, A.R., Sengupta, S., Fricker, Jr. R. D., Spitzner, D.J. and Woodall, W.H. (2018). Performance evaluation of social network anomaly detection using a moving window–based scan method. Qual. Reliab. Eng. Int. 34, 1699–1716.
Google Scholar
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R. et al. (2020). A novel coronavirus from patients with pneumonia in China. New Engl. J. Med., 2019.