Aminikhanghahi, S. and Cook, D.J. (2017). A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367.
Google Scholar
Angel, O., Friedman, J. and Hoory, S. (2015). The non-backtracking spectrum of the universal cover of a graph. Trans. Am. Math. Soc. 367, 4287–4318.
MathSciNet
MATH
Google Scholar
Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica 47–78.
Bao, W. and Michailidis, G. (2018). Core community structure recovery and phase transition detection in temporally evolving networks. Sci. Rep. 8, 1–16.
Google Scholar
Bhamidi, S., Jin, J., Nobel, A. et al. (2018). Change point detection in network models: Preferential attachment and long range dependence. Ann. Appl. Probab. 28, 35–78.
MathSciNet
MATH
Google Scholar
Bhattacharjee, M., Banerjee, M. and Michailidis, G. (2018). Change point estimation in a dynamic stochastic block model. arXiv:1812.03090.
Bhattacharyya, S. and Chatterjee, S. (2020). Consistent recovery of communities from sparse multi-relational networks: a scalable algorithm with optimal recovery conditions. Complex networks XI, pp. 92–103. Springer.
Bhattacharyya, S. and Chatterjee, S. (2020). General community detection with optimal recovery conditions for multi-relational sparse networks with dependent layers.
Bickel, P.J. and Sarkar, P. (2016). Hypothesis testing for automated community detection in networks. J. R. Stat. Soc. Ser. B Stat. Methodol. 78, 253–273.
MathSciNet
MATH
Google Scholar
Bleakley, K. and Vert, J.P. (2011).
Blonder, B., Wey, T.W., Dornhaus, A., James, R. and Sih, A. (2012). Temporal dynamics and network analysis. Methods Ecol. Evol. 3, 958–972.
Google Scholar
Bordenave, C., Lelarge, M. and Massoulié, L. (2015). Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs. In 2015 IEEE 56Th annual symposium on foundations of computer science, pp. 1347–1357. IEEE.
Bosc, M., Heitz, F., Armspach, J.P., Namer, I., Gounot, D. and Rumbach, L. (2003). Automatic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution. Neuroimage 20, 643–656.
Google Scholar
Brodsky, E. and Darkhovsky, B.S. (2013). Nonparametric methods in change point problems, vol. 243 Springer Science & Business Media.
Bruna, J. and Li, X. (2017). Community detection with graph neural networks. Stat. 1050, 27.
Google Scholar
Van de Bunt, G.G., Van Duijn, M.A. and Snijders, T.A. (1999). Friendship networks through time: an actor-oriented dynamic statistical network model. Comput. Math. Organ. Theory 5, 167–192.
MATH
Google Scholar
Cape, J., Tang, M. and Priebe, C.E. (2017). The kato–temple inequality and eigenvalue concentration with applications to graph inference. Electron. J. Stat. 11, 3954–3978.
MathSciNet
MATH
Google Scholar
Celik, T. (2009). Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6, 772–776.
Google Scholar
Celik, T. (2010). Image change detection using gaussian mixture model and genetic algorithm. J. Vis. Commun. Image Represen. 21, 965–974.
Google Scholar
Chen, H. et al. (2019). Sequential change-point detection based on nearest neighbors. Ann. Stat. 47, 1381–1407.
MathSciNet
MATH
Google Scholar
Chen, J. and Gupta, A.K. (2011). Parametric statistical change point analysis: with applications to genetics, medicine, and finance. Springer Science & Business Media.
Chen, S., Ilany, A., White, B.J., Sanderson, M.W. and Lanzas, C. (2015). Spatial-temporal dynamics of high-resolution animal networks: what can we learn from domestic animals? PloS one 10(6).
Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. J. R. Stat. Soc. Ser. B Stat. Methodol. 77, 475–507.
MathSciNet
MATH
Google Scholar
Coste, S. and Zhu, Y. (2019). Eigenvalues of the non-backtracking operator detached from the bulk. arXiv:1907.05603.
Cribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D. and Lindquist, M.A. (2012). Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 61, 907–920.
Google Scholar
Dall’Amico, L. and Couillet, R. (2019). Community detection in sparse realistic graphs: Improving the bethe hessian. In ICASSP 2019-2019 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp. 2942–2946. IEEE.
Dall’Amico, L., Couillet, R. and Tremblay, N. (2019). Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs. In Advances in neural information processing systems, pp. 4039–4049.
Dall’Amico, L., Couillet, R. and Tremblay, N. (2020). Optimal laplacian regularization for sparse spectral community detection. In ICASSP 2020-2020 IEEE International conference on acoustics, speech and signal processing (ICASSP, pp. 3237–3241. IEEE.
Ferraz Costa, A., Yamaguchi, Y., Juci Machado Traina, A., Traina, Jr C. and Faloutsos, C. (2015). Rsc: Mining and modeling temporal activity in social media. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 269–278. ACM.
Gao, C. and Lafferty, J. (2017). Testing network structure using relations between small subgraph probabilities. arXiv:1704.06742.
Gates, M.C. and Woolhouse, M.E. (2015). Controlling infectious disease through the targeted manipulation of contact network structure. Epidemics 12, 11–19.
Google Scholar
Girshick, M.A. and Rubin, H. (1952). A bayes approach to a quality control model. Ann. Math. Stat., 114–125.
Gulikers, L., Lelarge, M. and Massoulié, L. (2016). Non-backtracking spectrum of degree-corrected stochastic block models. arXiv:1609.02487.
Harchaoui, Z., Vallet, F., Lung-Yut-Fong, A. and Cappé, O. (2009). A regularized kernel-based approach to unsupervised audio segmentation. In 2009 IEEE International conference on acoustics, speech and signal processing, pp. 1665–1668. IEEE.
Hashimoto, K.I. (1989). Zeta functions of finite graphs and representations of p-adic groups. In Automorphic forms and geometry of arithmetic varieties, pp. 211–280. Elsevier.
Hocking, T.D., Schleiermacher, G., Janoueix-Lerosey, I., Boeva, V., Cappo, J., Delattre, O., Bach, F. and Vert, J.P. (2013). Learning smoothing models of copy number profiles using breakpoint annotations. BMC Bioinform. 14, 164.
Google Scholar
Hogg, T. and Lerman, K. (2012). Social dynamics of digg. EPJ Data Sci. 1, 5.
Google Scholar
Holme, P. (2015). Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234.
Google Scholar
Holme, P. and Saramäki, J. (2012). Temporal networks. Phys. Rep. 519, 97–125.
Google Scholar
Jacobs, A.Z., Way, S.F., Ugander, J. and Clauset, A. (2015). Assembling thefacebook: Using heterogeneity to understand online social network assembly. In Proceedings of the ACM Web Science Conference, pp. 1–10.
Jin, J., Ke, Z. and Luo, S. (2018). Network global testing by counting graphlets. In International conference on machine learning, pp. 2333–2341.
Kasetkasem, T. and Varshney, P.K. (2002). An image change detection algorithm based on markov random field models. IEEE Trans. Geosci. Remote Sens.40, 1815–1823.
Google Scholar
Kolmogorov, A.N. (1950). Unbiased estimates. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 14, 303–326.
Google Scholar
Krings, G., Karsai, M., Bernhardsson, S., Blondel, V.D. and Saramäki, J. (2012). Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci. 1, 4.
Google Scholar
Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L. and Zhang, P. (2013). Spectral redemption in clustering sparse networks. Proc. Natl. Acad. Sci. 110, 20935–20940.
MathSciNet
MATH
Google Scholar
Lahiri, M. and Berger-Wolf, T.Y. (2007). Structure prediction in temporal networks using frequent subgraphs. In 2007 IEEE Symposium on computational intelligence and data mining, p. 35–42. IEEE.
Lavielle, M. and Teyssiere, G. (2007). Adaptive detection of multiple change-points in asset price volatility. In Long memory in economics, pp. 129–156. Springer.
Le, C.M. and Levina, E. (2015). Estimating the number of communities in networks by spectral methods. arXiv:1507.00827.
Lei, J., Rinaldo, A. et al. (2015). Consistency of spectral clustering in stochastic block models. Ann. Stat. 43, 215–237.
MathSciNet
MATH
Google Scholar
Lévy-Leduc, C., Roueff, F. et al. (2009). Detection and localization of change-points in high-dimensional network traffic data. Ann. Appl. Stat. 3, 637–662.
MathSciNet
MATH
Google Scholar
Lorden, G. et al. (1971). Procedures for reacting to a change in distribution. Ann. Math. Stat. 42, 1897–1908.
MathSciNet
MATH
Google Scholar
Masuda, N. and Holme, P. (2017). Temporal network epidemiology. Springer.
Matteson, D.S. and James, N.A. (2014). A nonparametric approach for multiple change point analysis of multivariate data. J. Am. Stat. Assoc. 109, 334–345.
MathSciNet
MATH
Google Scholar
Meilă, M. (2007). Comparing clusterings-an information based distance. J. Multi. Anal. 98, 873–895.
MathSciNet
MATH
Google Scholar
Mislove, A.E. (2009). Online social networks: measurement, analysis, and applications to distributed information systems. Ph.D thesis.
Omodei, E., De Domenico, M.D. and Arenas, A. (2015). Characterizing interactions in online social networks during exceptional events. Front. Phys.3, 59.
Google Scholar
Padilla, O.H.M., Yu, Y. and Priebe, C.E. (2019). Change point localization in dependent dynamic nonparametric random dot product graphs. arXiv:1911.07494.
Page, E.S. (1954). Continuous inspection schemes. Biometrika 41, 100–115.
MathSciNet
MATH
Google Scholar
Page, E.S. (1957). On problems in which a change in a parameter occurs at an unknown point. Biometrika 44, 248–252.
MATH
Google Scholar
Panisson, A., Gauvin, L., Barrat, A. and Cattuto, C. (2013). Fingerprinting temporal networks of close-range human proximity. In 2013 IEEE International conference on pervasive computing and communications workshops (PERCOM workshops), pp. 261–266. IEEE.
Park, H.J. and Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science 342, 1238411.
Google Scholar
Park, Y., Priebe, C.E. and Youssef, A. (2013). Anomaly detection in time series of graphs using fusion of graph invariants. IEEE J. Select. Top. Signal Process. 7, 67–75.
Google Scholar
Peel, L. and Clauset, A. (2015). Detecting change points in the large-scale structure of evolving networks. In AAAI, pp. 2914–2920.
Peixoto, T.P. (2015). Inferring the mesoscale structure of layered, edge-valued, and time-varying networks, Vol. 92.
Peixoto, T.P. and Gauvin, L. (2018). Change points, memory and epidemic spreading in temporal networks. Scient. Rep. 8, 15511.
Google Scholar
Picard, F., Robin, S., Lavielle, M., Vaisse, C. and Daudin, J.J. (2005). A statistical approach for array cgh data analysis. BMC Bioinform. 6, 27.
Google Scholar
Popović, M., Štefančić, H., Sluban, B., Novak, P.K., Grčar, M., Mozetič, I., Puliga, M. and Zlatić, V. (2014). Extraction of temporal networks from term co-occurrences in online textual sources. PloS one 9, e99515.
Google Scholar
Radke, R.J., Andra, S., Al-Kofahi, O. and Roysam, B. (2005). Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14, 294–307.
MathSciNet
Google Scholar
Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C. and Samatova, N.F. (2015). Anomaly detection in dynamic networks: a survey. Wiley Interdiscip. Rev. Comput. Stat. 7, 223–247.
MathSciNet
Google Scholar
Reeves, J., Chen, J., Wang, X.L., Lund, R. and Lu, Q.Q. (2007). A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915.
Google Scholar
Rigbolt, K.T., Prokhorova, T.A., Akimov, V., Henningsen, J., Johansen, P.T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J.V. and Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4, rs3–rs3.
Google Scholar
Rocha, L.E., Liljeros, F. and Holme, P. (2010). Information dynamics shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci.107, 5706–5711.
MATH
Google Scholar
Rocha, L.E., Liljeros, F. and Holme, P. (2011). Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLos computational biology 7(3).
Roy, S., Atchadé, Y. and Michailidis, G. (2017). Change point estimation in high dimensional markov random-field models. J. R. Stat. Soc. Ser. B Stat. Methodol. 79, 1187–1206.
MathSciNet
MATH
Google Scholar
Saade, A., Krzakala, F. and Zdeborová, L. (2014). Spectral clustering of graphs with the bethe hessian. Advances in neural information processing systems, pp. 406–414.
Saade, A., Krzakala, F. and Zdeborová, L. (2014). Spectral density of the non-backtracking operator on random graphs. EPL Europhys. Lett. 107, 50005.
Google Scholar
Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W. and Jones, J.H. (2010). A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. 107, 22020–22025.
Google Scholar
Shiryaev, A.N. (1963). On optimum methods in quickest detection problems. Theory Probab. App. 8, 22–46.
MATH
Google Scholar
Siegmund, D. (2013). Change-points: from sequential detection to biology and back. Seq. Anal. 32, 2–14.
MathSciNet
MATH
Google Scholar
Sikdar, S., Ganguly, N. and Mukherjee, A. (2016). Time series analysis of temporal networks. Eur. Phys. J. B 89, 11.
Google Scholar
Sporns, O. (2013). Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247.
Google Scholar
Staudacher, M., Telser, S., Amann, A., Hinterhuber, H. and Ritsch-Marte, M. (2005). A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep. Phys. A Stat. Mech. Appl. 349, 582–596.
Google Scholar
Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Madsen, M.M., Larsen, J.E. and Lehmann, S. (2014). Measuring large-scale social networks with high resolution. PloS one 9, e95978.
Google Scholar
Thompson, W.H., Brantefors, P. and Fransson, P. (2017). From static to temporal network theory: Applications to functional brain connectivity. Netw. Neurosci. 1, 69–99.
Google Scholar
Viswanath, B., Mislove, A., Cha, M. and Gummadi, K.P. (2009). On the evolution of user interaction in facebook. In Proceedings of the 2nd ACM workshop on Online social networks, pp. 37–42.
Wang, D., Yu, Y. and Rinaldo, A. (2018). Optimal change point detection and localization in sparse dynamic networks. arXiv:1809.09602.
Wang, Y., Chakrabarti, A., Sivakoff, D. and Parthasarathy, S. (2017). Fast change point detection on dynamic social networks. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2992–2998. AAAI Press.
Wang, Y.R., Bickel, P.J. et al. (2017). Likelihood-based model selection for stochastic block models. Ann. Stat. 45, 500–528.
MathSciNet
MATH
Google Scholar
Watanabe, Y. and Fukumizu, K. (2009). Graph zeta function in the bethe free energy and loopy belief propagation. Advances in neural information processing systems, pp. 2017–2025.
Wills, P. and Meyer, F.G. (2019). Change point detection in a dynamic stochastic blockmodel. International conference on complex networks and their applications, pp. 211–222. Springer.
Yang, P., Dumont, G. and Ansermino, J.M. (2006). Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Trans. Biomed. Eng. 53, 2211–2219.
Google Scholar
Yedidia, J.S., Freeman, W.T. and Weiss, Y. (2003). Understanding belief propagation and its generalizations. Explor. Artif. Intell. New Millennium8, 236–239.
Google Scholar
Zhang, X., Shao, S., Stanley, H.E. and Havlin, S. (2014). Dynamic motifs in socio-economic networks. EPL Europhys. Lett. 108, 58001.
Google Scholar
Zhao, L., Wang, G.J., Wang, M., Bao, W., Li, W. and Stanley, H.E. (2018). Stock market as temporal network. Physic. A Stat. Mech. Appl.506, 1104–1112.
Google Scholar
Zhao, Z., Chen, L. and Lin, L. (2019). Change-point detection in dynamic networks via graphon estimation. arXiv:1908.01823.