Some Results on Quantile Version of R\(\acute {e}\)nyi Entropy of Order Statistics

Abstract

In this article, we introduce the quantile version of R\(\acute {e}\)nyi entropy and R\(\acute {e}\)nyi information measure of order statistics and study their properties. Also article deals with R\(\acute {e}\)nyi quantile entropy of order statistics for the residual lifetime and inactivity time. The generalized Pareto and finite range distributions, which are commonly used in the reliability modeling have been characterized in terms of the proposed quantile entropy measures with extreme order statistics.

This is a preview of subscription content, access via your institution.

References

  1. Abbasnejad, M. and Arghami, N.R. (2011). Renyi entropy properties of order statistics. Commun. Stat.-Theor. M. 40, 40–52.

    MathSciNet  Article  Google Scholar 

  2. Abraham, B. and Sankaran, P.G. (2005). Renyi’s entropy for residual lifetime distribution. Stat. Pap. 46, 17–30.

    MathSciNet  MATH  Google Scholar 

  3. Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1992). A first course in order statistics. Wiley, New York.

    Google Scholar 

  4. Asadi, M., Ebrahimi, N. and Soofi, E.S. (2005). Dynamic generalized information measures. Stat. Probab. Lett. 71, 85–98.

    MathSciNet  Article  Google Scholar 

  5. Asha, P.S. and Chacko, M. (2015). Residual Renyi entropy of k-record values. Commun. Stat.-Theor. M. 45, 4874–4885.

    MathSciNet  Article  Google Scholar 

  6. Baratpour, S., Ahmadi, J. and Arghami, N.R. (2008). Characterizations based on Renyi entropy of order statistics and record values. J. Statist. Plann. Inference 138, 2544–2551.

    MathSciNet  Article  Google Scholar 

  7. Baratpour, S. and Khammar, A. (2016). Tsallis entropy properties of order statistics and some stochastic comparisons. J. Stat. Res. Iran 13, 25–41.

    Article  Google Scholar 

  8. Cachin, C. (1997). Entropy measures and unconditional security in cryptography. Hartung-Gorre, Konstanz.

    Google Scholar 

  9. David, H.A. and Nagaraja, H.N. (2003). Order statistics. Wiley, New York.

    Google Scholar 

  10. Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Probab. 39, 434–440.

    MathSciNet  Article  Google Scholar 

  11. Ebrahimi, N. (1996). How to measure uncertainty in the residual lifetime distribution. Sankhy,a Series A 58, 48–56.

    MATH  Google Scholar 

  12. Ebrahimi, N., Soofi, E.S. and Zahedi, H. (2004). Information properties of order statistics and spacings. IEEE Trans. Inf. Theory 50, 177–183.

    MathSciNet  Article  Google Scholar 

  13. Gilchrist, W. (2000). Statistical modelling with quantile functions. Chapman and hall/CRC, Boca Raton.

    Google Scholar 

  14. Gupta, R.C. and Kirmani, S.N.U.A. (2008). Characterization based on convex conditional mean function. J. Statist. Plann. Inference 138, 964–970.

    MathSciNet  Article  Google Scholar 

  15. Hankin, R.K.S. and Lee, A. (2006). A new family of non-negative distributions. Austral. N. Z. J. Statist. 48, 67–78.

    MathSciNet  Article  Google Scholar 

  16. Kayal, S. (2015). Some results on dynamic discrimination measures of order (α,β). Hacettepe J. Math. Stat. 44, 179–188.

    MathSciNet  MATH  Google Scholar 

  17. Knockaert, L. (2000). Comments on resolution in time-frequency. IEEE Trans. Signal Process 48, 3585–3586.

    MathSciNet  Article  Google Scholar 

  18. Kullback, S. (1959). Information theory and statistics. Wiley, New York.

    Google Scholar 

  19. Kumar, V. (2017). On Renyi’s information Measure and k-record Values. J. Inform. Optim. Sci. Accepted.

  20. Kumar, V. and Rekha (2018). Quantile approach of dynamic generalized entropy (divergence) measure. Statistica 78.

  21. Maya, S.S. and Sunoj, S.M. (2008). Some dynamic generalized information measures in the context of weighted models. Statistica 68, 71–84.

    MathSciNet  MATH  Google Scholar 

  22. Nair, N.U., Sankaran, P.G. and Balakrishnan, N. (2013). Quantile-based reliability analysis.

  23. Nanda, A.K. and Paul, P. (2006). Some properties of past entropy and their applications. Metrika 64, 47–61.

    MathSciNet  Article  Google Scholar 

  24. Nanda, A.K., Sankaran, P.G. and Sunoj, S.M. (2014). Renyi’s Residual entropy: A quantile Approach. Stat. Probab. lett. 85, 114–121.

    Article  Google Scholar 

  25. Park, S. (2005). Testing exponentiality based on Kullback-Leibler information with the type II censored data. IEEE Trans. Reliab. 54, 22–26.

    Article  Google Scholar 

  26. Renyi, A. (1961). On measures of entropy and information. Proc. Fourth. Berkley Symp. Math. Stat. Prob., I, University of California Press, Berkley 547–561.

  27. Sankaran, P.G., Sunoj, S.M. and Nair, N.U. (2016). Kullback-leibler divergence: A quantile approach. Stat. Probab. Lett. 111, 72–79.

    MathSciNet  Article  Google Scholar 

  28. Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.

    MathSciNet  Article  Google Scholar 

  29. Sunoj, S.M., Krishnan, A.S. and Sankaran, P.G. (2017). Quantile based entropy of order statistics. J. Indian Soc. Probab. Stat. 18, 1–17.

    Article  Google Scholar 

  30. Sunoj, S.M., Sankaran, P.G. and Nanda, A.K. (2013). Quantile based entropy function in past lifetime. Stat. Probab. Lett. 83, 366–372.

    MathSciNet  Article  Google Scholar 

  31. Thapliyal, R., Taneja, H.C. and Kumar, V. (2015). Characterization results based on non-additive entropy of order statistics. Physica -A Stat. Mechan. Appl. 417, 297–303.

    MathSciNet  Article  Google Scholar 

  32. Van Staden, P.J. and Loots, M.R. (2009). L-moment estimation for the generalized lambda distribution. Third Annual ASEARC Conference, Australia.

    Google Scholar 

  33. Vasicek, O. (1976). A test for normality based on sample entropy. J. R. Stat. Soc. Series B (Methodological) 54–59.

  34. Vinga, S. and Almeida, J.S. (2004). Renyi continuous entropy of DNA sequence. J. Theor. Biol. 231, 377–388.

    Article  Google Scholar 

  35. Wong, K.M. and Chen, S. (1990). The entropy of ordered sequences and order statistics. IEEE Trans. Inform. Theory 36, 276–284.

    MathSciNet  Article  Google Scholar 

  36. Zarezadeh, S. and Asadi, M. (2010). Results on residual Renyi entropy of order statistics and record values. Inform. Sci. 180, 4195–4206.

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to acknowledge the Science and Engineering Research Board (SERB), Government of India, for the financial assistance (Ref. No. ECR/2017/001987) for carrying out this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, N. Some Results on Quantile Version of R\(\acute {e}\)nyi Entropy of Order Statistics. Sankhya A (2021). https://doi.org/10.1007/s13171-020-00241-0

Download citation

Keywords

  • R\(\acute {e}\)nyi entropy
  • order statistics
  • Quantile function reliability measures
  • series and parallel systems.

misc

  • Primary 62N05; Secondary 90B25