Skip to main content
Log in

Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

In this paper we show how one can implement in practice the bandwidth selection in deconvolution recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. We show that, using the proposed bandwidth selection and some special stepsizes, the proposed recursive estimator will be very competitive to the nonrecursive one in terms of estimation error and much better in terms of computational costs. We corroborate these theoretical results through simulations and a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Achilleos, A. and Delaigle, A. (2012). Local bandwidth selectors for deconvolution kernel density estimation. Stat. Comput. 22, 563–577.

    Article  MathSciNet  Google Scholar 

  • Altman, N. and Leger, C. (1995). Bandwidth selection for kernel distribution function estimation. J. Statist. Plann. Inference. 46, 195–214.

    Article  MathSciNet  Google Scholar 

  • Bojanic, R. and Seneta, E. (1973). A unified theory of regularly varying sequences. Math. Z. 134, 91–106.

    Article  MathSciNet  Google Scholar 

  • Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83, 1184–1186.

    Article  MathSciNet  Google Scholar 

  • Carroll, R.J., Stefanski, D. and Crainiceanu, L.A.C. (2006). Ruppert Measurement Error in Nonlinear Models: a Modern Perspective, 2nd edn. Chapman Hall, New York.

    Book  Google Scholar 

  • Davis, K.B. (1975). Mean square error properties of density estimates. Ann. Statist.3, 1025–1030.

    Article  MathSciNet  Google Scholar 

  • Delaigle, A. and Gijbels, I. (2002). Estimation of integrated squared density derivatives from a contaminated sample. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 869–886.

    Article  MathSciNet  Google Scholar 

  • Delaigle, A. and Gijbels, I. (2004a). Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56, 19–47.

    Article  MathSciNet  Google Scholar 

  • Delaigle, A. and Gijbels, I. (2004b). Practical bandwidth selection in deconvolution kernel density estimation. Comput. Statist. Data Anal. 45, 246–267.

    Article  MathSciNet  Google Scholar 

  • Fan, J. (1991a). Asymptotic normality for deconvolution kernel density estimators. Sankhya A 53, 97–110.

    MathSciNet  MATH  Google Scholar 

  • Fan, J. (1991b). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist 19, 1257–1272.

    Article  MathSciNet  Google Scholar 

  • Fan, J. (1991c). Global behaviour of deconvolution kernel estimates. Statist. Sinica1, 541–551.

    MathSciNet  MATH  Google Scholar 

  • Fan, J. (1992). Deconvolution with supersmooth distributions. Canad. J. Statist20, 155–169.

    Article  MathSciNet  Google Scholar 

  • Galambos, J. and Seneta, E. (1973). Regularly varying sequences. Proc. Amer. Math. Soc. 41, 110–116.

    Article  MathSciNet  Google Scholar 

  • Hall, P. and Maron, J.S. (1987). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6, 109–115.

    Article  MathSciNet  Google Scholar 

  • Hesse, C.H. (1999). Data-driven deconvolution. J. Nonparametr. Stat. 10, 343–373.

    Article  MathSciNet  Google Scholar 

  • Masry, E. (1993a). Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes. J. Multivariate Anal. 44, 47–68.

    Article  MathSciNet  Google Scholar 

  • Masry, E. (1993b). Strong consistency and rates for deconvolution of multivariate densities of stationary processes. Stochastic Process. Appl. 47, 53–74.

    Article  MathSciNet  Google Scholar 

  • Meister, A. (2004). On the effect of misspecifying the error density in a deconvolution problem. Canad. J. Statist. 32, 439–449.

    Article  MathSciNet  Google Scholar 

  • Meister, A. (2006). Density estimation with normal measurement error with unknown variance. Statist. Sinica. 16, 195–211.

    MathSciNet  MATH  Google Scholar 

  • Mokkadem, A. and Pelletier, M. (2007). A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm. Ann. Statist. 35, 1749–1772.

    Article  MathSciNet  Google Scholar 

  • Mokkadem, A., Pelletier, M. and Slaoui, Y. (2009a). The stochastic approximation method for the estimation of a multivariate probability density. J. Statist. Plann. Inference.139, 2459–2478.

    Article  MathSciNet  Google Scholar 

  • Mokkadem, A., Pelletier, M. and Slaoui, Y. (2009b). Revisiting révész’s stochastic approximation method for the estimation of a regression function. ALEA Lat. Am. J. Probab. Math. Stat. 6, 63–114.

    MathSciNet  MATH  Google Scholar 

  • Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.

    Book  Google Scholar 

  • Slaoui, Y. (2013). Large and moderate principles for recursive kernel density estimators defined by stochastic approximation method. Serdica. Math. J. 39, 53–82.

    MATH  Google Scholar 

  • Slaoui, Y. (2014a). Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method. Journal of Probability and Statistics 2014, ID 739640. https://doi.org/10.1155/2014/739640.

    Article  MathSciNet  Google Scholar 

  • Slaoui, Y. (2014b). The stochastic approximation method for the estimation of a distribution function. Math. Methods Statist. 23, 306–325.

    Article  MathSciNet  Google Scholar 

  • Slaoui, Y. (2015a). Plug-in Bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method. Stat. Neerl. 69, 483–509.

    Article  MathSciNet  Google Scholar 

  • Slaoui, Y. (2015b). Large and moderate deviation principles for averaged stochastic approximation method for the estimation of a regression function. Serdica. Math. J. 41, 307–328.

    MathSciNet  Google Scholar 

  • Slaoui, Y. (2015c). Moderate deviation principles for recursive regression estimators defined by stochastic approximation method. Int. J. Math. Stat. 16, 51–60.

    MathSciNet  MATH  Google Scholar 

  • Slaoui, Y. (2016). Optimal bandwidth selection for semi-recursive kernel regression estimators. Stat. Interface 9, 375–388.

    Article  MathSciNet  Google Scholar 

  • Staudenmayer, J., Ruppert, D. and Buonaccorsi, J.R. (2008). Density estimation in the presence of heteroscedastic measurement error. J. Amer. Statist. Assoc. 103, 726–736.

    Article  MathSciNet  Google Scholar 

  • Stefanski, L.A. and Carroll, R.J. (1990). Deconvoluting kernel density estimators. Statistics. 2, 169–184.

    Article  MathSciNet  Google Scholar 

  • Tapia, R.A. and Thompson, J.R. (1978). Nonparametric Density Estimation. John Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Van, E.S.A.J. and Uh, H.W. (2004). Asymptotic normality of kernel type deconvolution estimators: Crossing the Cauchy boundary. J. Nonparametr. Stat. 16, 261–277.

    Article  MathSciNet  Google Scholar 

  • Van, E.S.A.J and Uh, H.W. (2005). Asymptotic normality of kernel type deconvolution estimators. Scand. J. Stat. 32, 467–483.

    Article  MathSciNet  Google Scholar 

  • Wand, M.P. (1998). Finite sample performance of deconvolving density estimators. Statist. Probab. Lett. 37, 131–139.

    Article  MathSciNet  Google Scholar 

  • Wand, X.-F. and Wand, B. (2011). Deconvolution estimation in measurement error models: the R package decon. J. Stat. Softw. 39, 1–24.

    Google Scholar 

  • Zhang, S. and Karunamuni, R. (2000). Boundary bias correction for nonparametric deconvolution. Ann. Inst. Statist. Math. 52, 612–629.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the Editor and the referees for their very helpful comments, which led to a considerable improvement of the original version of the paper and a more sharply focused presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousri Slaoui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaoui, Y. Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method. Sankhya A 83, 312–352 (2021). https://doi.org/10.1007/s13171-019-00182-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-019-00182-3

Keywords and phrases.

AMS (2000) subject classification

Navigation