Skip to main content
Log in

An Overview on Econometric Models for Linear Spatial Panel Data

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

When spatial data are repeatedly collected from the same spatial locations over a short period of time, a spatial panel/longitudinal data set is generated. Thus, this type of spatial longitudinal data must exhibit both spatial and longitudinal correlations, which are not easy to model. This work is motivated by existing studies in statistics and econometrics literature but the proposed model and inference procedures should be applicable to the spatial panel data encountered in other fields as well such as environmental and/or ecological setups. Specifically, unlike the existing studies, we propose a new dynamic mixed model to accommodate both spatial and panel correlations. A complete theoretical analysis is given for the estimation of regression effects, and spatial and panel correlations by exploiting second and higher order moments based quasi-likelihood methods. Asymptotic properties are also studied in details. The step by step estimation results developed in the paper should be useful to the practitioners dealing with spatial panel data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge.

    Google Scholar 

  • Asif, A. and Moura, J.M.F. (2005). Block matrices with l-block-banded inverse: Inversion algorithms. IEEE Trans. Signal Process. 53, 630–642.

    Article  MathSciNet  Google Scholar 

  • Basu, S. and Reinsel, G.C. (1994). Regression models with spatially correlated errors. J. Am. Stat. Assoc. 89, 88–99.

    Article  Google Scholar 

  • Case, A.C. (1991). Spatial patterns in household demand. Econometrica 59, 953–965.

    Article  Google Scholar 

  • Jain, J., Li, H., Cauley, S., Koh, C-K. and Balakrishnan, V. (2007). Numerically stable algorithms for inversion of block tri-diagonal and band matrices. ECE (Electrical and Computer Engineering Technical Reports), Paper 357, 1–13.

  • Jones, R.H. and Vecchia, A.V. (1993). Fitting continuous ARMA models to unequally spaced spatial data. J. Am. Stat. Assoc. 88, 947–945.

    Article  Google Scholar 

  • Kang, E. L., Cressie, N. and Shi, T. (2010). Using temporal variability to improve spatial mapping with application to satellite data. In Special Issue, Canadian Journal of Statistics (B.C. Sutradhar, ed.) pp. 271–289.

  • Kaufmann, H. (1987). Regression models for non-stationary categorical time series: Asymptotic estimation theory. Ann. Statist. 15, 79–98.

    Article  MathSciNet  Google Scholar 

  • Lee, L.F. (2004). Asymptotic distribution of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72, 1899–1925.

    Article  MathSciNet  Google Scholar 

  • Lee, L.F. and Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. J. Econometr. 154, 165–185.

    Article  MathSciNet  Google Scholar 

  • Mariathas, H. H. and Sutradhar, B.C. (2016). Variable family size based spatial moving correlations model. Sankhya B 78, 1–38.

    Article  MathSciNet  Google Scholar 

  • Robinson, P.M. and Rossi, F. (2015). Refinements in maximum likelihood inference on spatial autocorrelation in panel data. J. Econometr. 159, 1–10.

    MathSciNet  MATH  Google Scholar 

  • Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses. Statist. Sci. 18, 377–393.

    Article  MathSciNet  Google Scholar 

  • Sutradhar, B. C. (2011). Dynamic Mixed Models for Familial Longitudinal Data. Springer, New York.

    Book  Google Scholar 

  • Sutradhar, B.C. (2018). Block-banded spatial correlation matrix construction for spatial binary data analysis. Submitted.

  • Sutradhar, B.C., Warriyar, K.V.V. and Zheng, N. (2016). Inferences in semi-parametric dynamic models for repeated count data. Australian and New Zealand J. Stat. 58, 397–434.

    Article  MathSciNet  Google Scholar 

  • Warriyar, K. V. and Sutradhar, V.B. C. (2014). Estimation with improved efficiency in semi-parametric linear longitudinal models. Brazilian J. Probab. Stat. 28, 561–586.

    Article  MathSciNet  Google Scholar 

  • Wijekoon, P., Oyet, A. and Sutradhar, B.C. (2018). Pair-wise family-based correlation model for spatial count data. Sankhya B, Available online before print.

Download references

Acknowledgements

This research was supported partially by an NSERC grant. The author thanks the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra C. Sutradhar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Computation for the Derivatives and Asymptotic Properties

Appendix: Computation for the Derivatives and Asymptotic Properties

1.1 Formulas for the derivatives with respect to \(\sigma ^{2}_{\gamma }\):

Formula for \(\frac {\partial \lambda _{ii,t}(\sigma ^{2}_{\gamma },\phi ,\sigma ^{2}_{\epsilon },\boldsymbol {\xi }^{\prime })} {\partial \sigma ^{2}_{\gamma }}:\) Because by Eq. 5.27,

$$ \begin{array}{@{}rcl@{}} &&\lambda_{ii,t}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon},\boldsymbol{\xi}^{\prime}) \\ &=&\left[\sigma^{2}_{\gamma}[\boldsymbol{a}^{\prime}_{i}\{\phi \boldsymbol{1}_{n_{i}}\boldsymbol{1}^{\prime}_{n_{i}}+(1-\phi)\boldsymbol{I}_{n_{i}}\}\boldsymbol{a}_{i}]+\sigma^{2}_{\epsilon}\right] +\left[\boldsymbol{z}^{\prime}_{i}\boldsymbol{\theta}+\boldsymbol{x}^{\prime}_{i}(t)\boldsymbol{\beta}\right]^{2}, \end{array} $$

one obtains

$$ \begin{array}{@{}rcl@{}} \frac{\partial \lambda_{ii,t}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon},\boldsymbol{\xi}^{\prime})} {\partial \sigma^{2}_{\gamma}}&=&\boldsymbol{a}^{\prime}_{i}\{\phi \boldsymbol{1}_{n_{i}}\boldsymbol{1}^{\prime}_{n_{i}}+(1-\phi)\boldsymbol{I}_{n_{i}}\}\boldsymbol{a}_{i}. \end{array} $$
(a.1)

Formula for \(\frac {\partial \lambda ^{*}_{ij,t}(\sigma ^{2}_{\gamma },\phi ,\sigma ^{2}_{\epsilon },\boldsymbol {\xi }^{\prime })} {\partial \sigma ^{2}_{\gamma }}\): By using Eqs. 3.273.28, one obtains this derivative as

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial \lambda^{*}_{ij,t}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon},\boldsymbol{\xi}^{\prime})} {\partial \sigma^{2}_{\gamma}} \\ & =&\left\{\begin{array}{ll} 0 & \{d_{s_{iu_{i}}s_{jv_{j}}}, \text{for all} u_{i}=1,\ldots,n_{i};v_{j}=1,\ldots,n_{j}\} >d^{*}\\ G_{ij}(\phi,\boldsymbol{a}_{i},\boldsymbol{a}_{j};n_{i},n_{j}) & \text{otherwise}. \end{array} \right.\\ \end{array} $$
(a.2)

Formula for the derivative with respect to ϕ:

Formula for \(\frac {\partial \lambda ^{*}_{i(i+1),t}(\sigma ^{2}_{\gamma },\phi ,\sigma ^{2}_{\epsilon },\boldsymbol {\xi }^{\prime })} {\partial \phi }\): This derivative also follows from Eqs. 3.273.28. Specifically,

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\frac{\partial \lambda^{*}_{i(i+1),t}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon},\boldsymbol{\xi}^{\prime})} {\partial \phi} \\ \!\!\!& =&\!\!\!\left\{\begin{array}{ll} 0 & \{d_{s_{iu_{i}}s_{(i+1)v_{i+1}}},\! \text{for all} u_{i} = 1,\!\ldots\!,n_{i};v_{i+1} = 1,\!\ldots\!,n_{i+1}\} \!\!>\!\!d^{*}\\ \sigma^{2}_{\gamma} \frac{\partial G_{i,i+1}(\phi,\boldsymbol{a}_{i},\boldsymbol{a}_{i+1};n_{i},n_{i+1})}{\partial \phi} & \text{otherwise}, \end{array} \right.\\ \end{array} $$
(a.3)

where, by Eq. 3.27,

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial G_{i,i+1}(\phi,\boldsymbol{a}_{i},\boldsymbol{a}_{i+1};n_{i},n_{i+1})}{\partial \phi} \\ &=& \left[\left\{{\boldsymbol{a}^{(1)}}^{\prime}_{i},[\boldsymbol{a}_{ij}+\tilde{\boldsymbol{a}}_{ij}]^{\prime},{\boldsymbol{a}^{(1)}}^{\prime}_{j}\right\} \frac{\partial \boldsymbol{C}^{\dagger}_{ij}(\phi;n_{i}+n^{(1)}_{j})}{\partial \phi}\right.\\ &&\left. \left\{{\boldsymbol{a}^{(1)}}^{\prime}_{i},[\boldsymbol{a}_{ij}+\tilde{\boldsymbol{a}}_{ij}]^{\prime},{\boldsymbol{a}^{(1)}}^{\prime}_{j}\right\}^{\prime} \right]_{|j=i+1}, \end{array} $$
(a.4)

with

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial \boldsymbol{C}^{\dagger}_{ij}(\phi;n_{i}+n^{(1)}_{j})}{\partial \phi}, \end{array} $$

easily computed from Eq. 3.25.

Consistency of \(\hat {\rho }_{\ell }\) (5.52)

Notice that as \(K \rightarrow \infty ,\) and T is fixed and small, the first order approximation used in Eq. 5.52 is equivalent to write

$$ \begin{array}{@{}rcl@{}} E[\hat{\rho}_{\ell,N}]&=&E\left[\frac{\text{MSP}}{\text{MSS}}\right] \\ &=&\frac{E[\text{MSP}]}{E[\text{MSS}]}+o_{p}(1/\sqrt{K}). \end{array} $$
(a.5)

Consequently, by Eqs. 5.51 and 5.52, one writes

$$ \begin{array}{@{}rcl@{}} &&E[\hat{\rho}_{\ell}]=\rho_{\ell}+o_{p}(1/\sqrt{K}), \text{and} \\ &&[\hat{\rho}_{\ell}-\rho_{\ell}]=O(\sigma_{\hat{\rho}_{\ell}})+o_{p}(1/\sqrt{K}), \end{array} $$
(a.6)

where, taking BK,5 as a K-dependent finite quantity, and assuming that

$$ \begin{array}{@{}rcl@{}} &&\left[\frac{\sigma^{2}_{\epsilon}}{K(T-\ell)}\sum\limits^{K}_{i=1}\sum\limits^{T-\ell}_{t=1} \frac{1}{\sqrt{\sigma_{tt|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon}) \sigma_{(t+\ell,t+\ell)|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon})}}\right]^{-1} \leq B_{K,5},\\ \end{array} $$
(a.7)

following Eq. 5.52, one obtains \(\sigma ^{2}_{\hat {\rho }_{\ell }}\) in Eq. a.6 as

$$ \begin{array}{@{}rcl@{}} \sigma^{2}_{\hat{\rho}_{\ell}}&=&\text{var}[\hat{\rho}_{\ell}] =O(B_{K,5})\text{var}(\hat{\rho}_{\ell,N}). \end{array} $$
(a.8)

Next by Eq. 5.50, using the so-called first order approximation, we write

$$ \begin{array}{@{}rcl@{}} \text{var}(\hat{\rho}_{\ell,N})&=&\left[\text{var}\{\text{MSS}\}\right]^{-1}\text{var}\{\text{MSP}\}. \end{array} $$
(a.9)

To compute these variance components, we first recall that the full covariance matrix for the spatial panel data was computed by Eq. 3.42. We then assume that the fourth order moments for the spatial panel data also exist and they are bounded, specially, similar to spatial formula (5.46), assume that

$$\text{cov}[\{y_{s_{i}}(t)-\mu_{t|i}(\boldsymbol{\theta},\boldsymbol{\beta})\}^{2}, \{y_{s_{j}}(t^{*})-\mu_{t^{*}|j}(\boldsymbol{\theta},\boldsymbol{\beta})\}^{2}]=\omega^{*}_{(ii,jj)(tt,t^{*}t^{*})}(\cdot)$$

exist and bounded, so that for K-dependent finite quantities BK,6 and BK,7,

$$ \begin{array}{@{}rcl@{}} \text{var}\{(KT)\text{MSS}\}&=&\left[ \sum\limits^{K}_{i=1}\sum\limits^{T}_{t=1}[\sigma^{-2}_{tt|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon})] \omega^{*}_{(ii,ii)(tt,tt)}(\cdot)\right.\\ &&+\left. \sum\limits^{K}_{i \neq j}\sum\limits^{T}_{t=1}\sum\limits^{T}_{t^{*} \neq t} [\sigma^{-2}_{tt|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon})] [\omega^{*}_{(ii,jj)(tt,t^{*}t^{*})}(\cdot)]\right] \leq B_{K,6} \\ \end{array} $$
(a.10)

and

$$ \begin{array}{@{}rcl@{}} &&\text{var}\{[K(T-\ell)])\text{MSP}\} \\ &=&\left[ \sum\limits^{K}_{i=1}\sum\limits^{T}_{t=1}[\sigma^{-1}_{tt|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon}) \sigma^{-1}_{(t+\ell,t+\ell)|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon})] \omega^{*}_{(ii,ii)(t(t+\ell),t(t+\ell))}(\cdot)\right. \\ &&\quad+\left. \sum\limits^{K}_{i \neq j}\sum\limits^{T}_{t=1}\sum\limits^{T}_{t^{*} \neq t} [\sigma^{-1}_{tt|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon}) \sigma^{-1}_{(t+\ell,t+\ell)|i}(\sigma^{2}_{\gamma},\phi,\sigma^{2}_{\epsilon})]\right. \\ &&\quad\times \left. [\omega^{*}_{(ii,jj)(t(t+\ell),t^{*}(t^{*}+\ell))}(\cdot)]\vphantom{\sum\limits^{K}_{i=1}}\right] \leq B_{K,7}. \end{array} $$
(a.11)

By applying Eqs. a.10 and a.11 to a.9, it then follows from Eq. a.8 that

$$ \begin{array}{@{}rcl@{}} \sigma^{2}_{\hat{\rho}_{\ell}} \equiv O(B_{K,5})O(B^{-1}_{K,6})O(B_{K,7}), \end{array} $$
(a.12)

implying by Eq. a.6 that

$$ \begin{array}{@{}rcl@{}} [\hat{\rho}_{\ell}-\rho_{\ell}]&=&O(\sigma_{\hat{\rho}_{\ell}})+o_{p}(1/\sqrt{K}) \\ &=&O(B^{\frac{1}{2}}_{K,5})O(B^{-\frac{1}{2}}_{K,6})O(B^{\frac{1}{2}}_{K,7})+o_{p}(1/\sqrt{K}) \\ &\equiv& o_{p}(1/\sqrt{K}), \end{array} $$
(a.13)

and hence

$$\lim\limits_{K \rightarrow \infty}|\hat{\rho}_{\ell}-\rho_{\ell}| \rightarrow_{p}0 \Rightarrow \hat{\rho}_{\ell} \rightarrow_{p} \rho_{\ell},$$

i.e., \(\hat {\rho }_{\ell }\) defined by Eq. 5.52 is a consistent estimator for the panel correlation index parameter ρ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, B.C. An Overview on Econometric Models for Linear Spatial Panel Data. Sankhya A 83, 206–244 (2021). https://doi.org/10.1007/s13171-019-00178-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-019-00178-z

Keywords and phrases

AMS (2000) subject classification

Navigation