Skip to main content
Log in

Nonparametric Analysis of Non-Euclidean Data on Shapes and Images

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

The article presents some of the basic theory for nonparametric inference on non-Euclidean spaces using Fréchet means that has been developed during the past two decades. Included are recent results on the asymptotic distribution theory of sample Fréchet means on such spaces, especially differentiable and Riemannian manifolds. Apart from this main theme and its applications, a nonparametric Bayes theory on Riemannian manifolds is outlined for the purpose of density estimation and classification. A final section briefly discusses the problem of machine vision, or robotic recognition of images as Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afsari, B. (2011). Riemannian lp center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139, 2, 655–673.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandrov, A.D. (1951). A theorem on triangles in a metric space and some of its applications. Trudy Matematicheskogo Instituta imeni VA Steklova 38, 5–23. (Russian; translated into German and combined with more material in Alexandrov 1957).

    MathSciNet  Google Scholar 

  • Alexandrov, A.D. (1957). ÜBer eine Verallgemeinerung der Riemannshen Geometrie. Schriften Forschungsinst Math 1, 33–84.

    Google Scholar 

  • Bandulasiri, A. and Patrangenaru, V. (2005). Algorithms for nonparametric inference on shape manifolds. In Proceedings of JSM 2005, MN.

  • Bandulasiri, A., Bhattacharya, R.N. and Patrangenaru, V. (2009). Nonparametric inference on shape manifolds with applications in medical imaging. J. Multivariate Anal. 100, 1867–1882.

    Article  MathSciNet  MATH  Google Scholar 

  • Barden, D., Le, H. and Owen, M. (2013). Central limit theorems for fréchet means in the space of phylogenetic trees. Electron. J. Probab. 18, 1–25. https://doi.org/10.1214/EJP.v18-2201, http://ejp.ejpecp.org/article/view/2201.

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 1, 289–300.

    MathSciNet  MATH  Google Scholar 

  • Berry, T. and Sauer, T. (2017). Consistent manifold representation for topological data analysis, george mason university; preprint on webpage at http://math.gmu.edu/~tsauer/.

  • Bhattacharya, A. (2008). Nonparametric statistics on manifolds with applications to shape spaces. Ph.D., Thesis, University of Arizona.

  • Bhattacharya, A. and Bhattacharya, R. (2008). Nonparametric statistics on manifolds with application to shape spaces. In Pushing the Limits of Contemporary Statistics: Contributions in honor of JK Ghosh IMS Collections 3, 282–301.

    MathSciNet  Google Scholar 

  • Bhattacharya, A. and Bhattacharya, R. (2012). Nonparametric inference on manifolds: with applications to shape spaces. Cambridge University Press, iMS monographs #2.

  • Bhattacharya, A. and Dunson, D. (2010). Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika 97, 851–865.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, A. and Dunson, D.B. (2012). Strong consistency of nonparametric bayes density estimation on compact metric spaces with applications to specific manifolds. Ann. Inst. Stat. Math. 64, 4, 687–714.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R. (2007). On the uniqueness of intrinsic mean. Unpublished manuscript.

  • Bhattacharya, R. and Lin, L. (2017). Omnibus clts for fréchet means and nonparametric inference on non-euclidean spaces. Proc. Amer. Math. Soc. 145, 1, 413–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N. and Patrangenaru, V. (2002). Nonparametric estimation of location and dispersion on riemannian manifolds. JStatistPlan Infer Volume in honor of the 80th birthday of professor CRRao 108, 22–35.

    MATH  Google Scholar 

  • Bhattacharya, R.N. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Statist. 31, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds-ii. Ann. Statist. 33, 1225–1259.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N., Lin, L. and Patrangenaru, V. (2016). A course in mathematical statistics and large sample theory. Springer Texts in Statistics, Springer.

  • Bookstein, F. (1978). The measurement of biological shape and shape change lecture notes in biomathematics. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Bookstein, F.L. (1984). A statistical method for biological shape comparisons. J. Theor. Biol. 107, 3, 475–520.

    Article  Google Scholar 

  • Boothby, W. (1986). An introduction to differentiable manifolds and riemannian geometry, 2nd edn. Academic Press, New York.

    MATH  Google Scholar 

  • Bull, D., Helfen, L., Sinclair, I., Spearing, S. and Baumbach, T. (2013). A comparison of multi-scale 3d x-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos. Sci. Technol. 75, 55–61.

    Article  Google Scholar 

  • Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. 46, 255–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Chavel, I. (1984). Eigenvalues in Riemannian geometry. Elsevier Science, Pure and Applied Mathematics. https://books.google.com/books?id=0v1VfTWuKGgC.

    MATH  Google Scholar 

  • Chikuse, Y. (2003). Statistics on special manifolds. Springer, New York.

    Book  MATH  Google Scholar 

  • Davis, E. and Sethuraman, S. (2017). Approximating geodesics via random points. University of Arizona; working paper on webpage at http://math.arizona.edu/~sethuram/papers.html.

  • Dey, T.K. and Li, K. (2009). Persistence-based handle and tunnel loops computation revisited for speed up. Computers & Graphics 33, 3, 351–358. https://doi.org/10.1016/j.cag.2009.03.008, http://www.sciencedirect.com/science/article/pii/S0097849309000429, {IEEE} International Conference on Shape Modelling and Applications 2009.

    Article  Google Scholar 

  • Dey, T.K., Li, K., Sun, J. and Cohen-Steiner, D. (2008). Computing geometry-aware handle and tunnel loops in 3d models. ACM Trans. Graph. 27, 3, 45:1–45:9. https://doi.org/10.1145/1360612.1360644.

    Article  Google Scholar 

  • Dimitric, I. (1996). A note on equivariant embeddings of grassmannians. PublInstMath (Beograd) (NS) 59, 131–137.

    MathSciNet  MATH  Google Scholar 

  • Do Carmo, M. (1992). Riemannian geometry. Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  • Dryden, I.L. and Mardia, K.V. (1998). Statistical shape analysis. Wiley, New York.

    MATH  Google Scholar 

  • Dryden, I.L., Koloydenko, A. and Zhou, D. (2009). Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3, 1102–1123.

  • Dryden, K.A.I.L., Le, H. and Wood, A.T. (2008). A multi-dimensional scaling approach to shape analysis. Biometrika 95, 4, 779–798.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T. (1983). Bayesian density estimation by mixtures of normal distributions. In Recent Advances in Statistics, (H. Rizvi and J. Rustagi, eds.). Academic Press, New York.

  • Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T.S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2, 615–629.

    Article  MathSciNet  MATH  Google Scholar 

  • Folland, G. (1984). Real analysis: modern techniques and their applications. Pure and applied mathematics, Wiley. https://books.google.com/books?id=OoG0ngEACAAJ.

    MATH  Google Scholar 

  • Fréchet, M (1947). Anciens et nouveaux indices de corrélation. leur application au calcul des retards économiques. Econometrica 15, 1, 1–30. http://www.jstor.org/stable/1905812.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallot, S., Hulin, D. and Lafontaine, J. (1990). Riemannian geometry universitext. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Ghosal, S. and van der Vaart, A. (2007). Posterior convergence rates of dirichlet mixtures at smooth densities. Ann. Statist. 35, 2, 697–723. https://doi.org/10.1214/009053606000001271 https://doi.org/10.1214/009053606000001271.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosal, S., Ghosh, J.K. and Ramamoorthi, R.V. (1999). Posterior consistency of dirichlet mixtures in density estimation. Ann. Statist. 27, 1, 143–158. https://doi.org/10.1214/aos/1018031105.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodall, C.R. and Mardia, K.V. (1991). A geometrical derivation of the shape density. Adv. Appl. Probab. 23, 3, 496–514.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodlett, C.B., Fletcher, P.T., Gilmore, J.H. and Gerig, G. (2009). Group analysis of DTI fiber tract statistics with application to neurodevelopment. Neuroimage 45, 1, Supplement 1, S133–S142. http://www.sciencedirect.com/science/article/pii/S1053811908011993.

    Article  Google Scholar 

  • Gromov, M. (1981). Structures metriques pour les varietes Riemanniennes. Redige par J. Lafontaine et P. Pansu, Cedic/Fernand Nathan.

  • Hatcher, A. (2002). Algebraic topology. Cambridge University Press, Cambridge. https://books.google.com/books?id=BjKs86kosqgC.

    MATH  Google Scholar 

  • Hendriks, H. and Landsman, Z. (1998). Mean location and sample mean location on manifolds: asymptotics, tests, confidence regions. J Multivariate Anal 67, 227–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Hjort, N., Holmes, C., Muller, P. and Walker, S. (2010). Bayesian nonparametrics. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Hotz, T. and Huckemann, S. (2015). Intrinsic means on the circle: uniqueness, locus and asymptotics. Ann. Inst. Stat. Math. 67, 1, 177–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Hotz, T., Skwerer, S., Huckemann, S., Le, H., Marron, J.S., Mattingly, J.C., Miller, E., Nolen, J., Owen, M. and Patrangenaru, V. (2013). Sticky central limit theorems on open books. Ann. Appl. Probab. 23, 6, 2238–2258.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C., Styner, M. and Zhu, H. (2015). Clustering high-dimensional landmark-based two-dimensional shape data. J. Am. Stat. Assoc. 110, 511, 946–961. https://doi.org/10.1080/01621459.2015.1034802.

    Article  MathSciNet  Google Scholar 

  • Huckemann, S., Hotz, T. and Munk, A. (2010). Intrinsic shape analysis: geodesic pca for riemannian manifolds modulo isometric lie group actions (with discussions). Statist. Sinica 20, 1–100.

    MathSciNet  MATH  Google Scholar 

  • Jones, P.W., Maggioni, M. and Schul, R. (2008). Manifold parametrizations by eigenfunctions of the laplacian and heat kernels. Proc. Natl. Acad. Sci. 105, 6, 1803–1808.

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, S., Schwartzman, A. and Groisser, D. (2015). Scaling-rotation distance and interpolation of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 36, 3, 1180–1201.

    Article  MathSciNet  MATH  Google Scholar 

  • Kac, M. (1966). Can one hear the shape of a drum? Am. Math. Mon. 73, 4, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D., Barden, D., Carne, T. and Le, H. (1999). Shape and shape theory. Wiley, New York.

    Book  MATH  Google Scholar 

  • Kendall, D.G. (1977). The diffusion of shape. Adv. Appl. Probab. 9, 428–430.

    Article  Google Scholar 

  • Kendall, D.G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, W. and Le, H. (2011). Limit theorems for empirical fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25, 3, 323–352.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, W.S. (1990). Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc. Lond. Math. Soc. 3, 2, 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Kent, J. (1991). The complex Bingham distribution and shape analysis. Tech rep., Department of Statistics, University of Leeds.

  • Kent, J. (1994). The complex Bingham distribution and shape analysis. J. R. Stat. Soc. Ser. B 56, 285–299.

    MathSciNet  MATH  Google Scholar 

  • Kindlmann, G., Tricoche, X. and Westin, C.F. (2007). Delineating white matter structure in diffusion tensor {MRI} with anisotropy creases. Med. Image Anal. 11, 5, 492–502. https://doi.org/10.1016/j.media.2007.07.005, http://www.sciencedirect.com/science/article/pii/S1361841507000746, Special Issue on the Ninth International Conference on Medical Image Computing and Computer-Assisted Interventions - {MICCAI} 2006.

    Article  Google Scholar 

  • Le, H. (2001). Locating fréchet means with application to shape spaces. Adv. Appl. Probab. 33, 2, 324–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Le Cam, L. and Yang, G. (1990). Asymptotics in statistics: some basic concepts. Springer Series in Statistics, Springer. https://books.google.com/books?id=-RAKuoDEVMsC.

  • Lehmann, E. (1999). Elements of Large-Sample theory springer texts in statistics. Springer, New York.

    Book  Google Scholar 

  • Lenglet, C., Rousson, M., Deriche, R. and Faugeras, O. (2006). Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vision 25, 3, 423–444. https://doi.org/10.1007/s10851-006-6897-z.

    Article  MathSciNet  Google Scholar 

  • Lin, L., St Thomas, B., Zhu, H. and Dunson, D.B. (2017). Extrinsic local regression on manifold-valued data. J. Am. Stat. Assoc. 112, 519, 1261–1273.

    Article  MathSciNet  Google Scholar 

  • Mardia, K. and Patrangenaru, V. (2005). Directions and projective shapes. Ann. Statist. 33, 1666–1699.

    Article  MathSciNet  MATH  Google Scholar 

  • McKilliam, R.G., Quinn, B.G. and Clarkson, I.V.L. (2012). Direction estimation by minimum squared arc length. IEEE Trans. Signal Process. 60, 5, 2115–2124. https://doi.org/10.1109/TSP.2012.2186444.

    Article  MathSciNet  MATH  Google Scholar 

  • Patrangenaru, V. (1998). Asymptotic statistics on manifolds and their applications. Ph.D Thesis, Indiana University, Bloomington.

  • Patrangenaru, V. and Ellingson, L. (2015). Nonparametric statistics on manifolds and their applications to object data analysis, 1st edn. CRC Press, Inc, Boca Raton.

    Book  MATH  Google Scholar 

  • Patrangenaru, V., Liu, X. and Sugathadasa, S. (2010). A nonparametric approach to 3d shape analysis from digital camera images—i. J. Multivar. Anal. 101, 1, 11–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Pelletier, B. (2005). Kernel density estimation on riemannian manifolds. Statistics and Probability Letters 73, 297–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J.R. (2007). Current status of cognitive-behavioral therapy as a psychosocial treatment for adult attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 9, 5, 427–433.

    Article  Google Scholar 

  • Reshetnyak, Y.G. (1968). Inextensible mappings in a space of curvature no greater than k. Sib. Math. J. 9, 4, 683–689.

    Article  MATH  Google Scholar 

  • Reuter, M. (2006). Laplace Spectra for Shape Recognition. Books on Demand GmbH. ISBN:3-8334-5071-1.

  • Rosenberg, S. (1997). The laplacian on a riemannian manifold: an introduction to analysis on manifolds. In EBSCO Ebook academic collection. Cambridge University Press. https://books.google.com/books?id=gzJ6Vn0y7XQC.

  • Sethuraman, J. (1994). A constructive definition of dirichlet priors. Stat. Sin. 4, 2, 639–650. http://www.jstor.org/stable/24305538.

    MathSciNet  MATH  Google Scholar 

  • Shen, W., Tokdar, S.T. and Ghosal, S. (2013). Adaptive bayesian multivariate density estimation with dirichlet mixtures. Biometrika. https://doi.org/10.1093/biomet/ast015.

  • Sparr, G. (1992). Depth-computations from polyhedral images. In Proceedings of the 2nd european conf on computer vision, (G. Sandimi, ed.), 378–386. Springer. Also in Image and Vision Computing, vol. 10, p. 683–688.

  • Sturm, K.T. (2003). Probability measures on metric spaces of nonpositive curvature. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces: Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs: April 16–July 13, 2002, Emile Borel Centre of the Henri Poincaré, Institute, Paris, France 338, 357.

    MathSciNet  MATH  Google Scholar 

  • von Bahr, B. (1967). On the central limit theorem in r k. Arkiv fö,r Matematik 7, 1, 61–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Weyl, H. (1911). Ueber die asymptotische verteilung der eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp 110–117.

  • Wu, Y. and Ghosal, S. (2010). The l1-consistency of dirichlet mixtures in multivariate bayesian density estimation. J. Multivar. Anal. 101, 10, 2411–2419. https://doi.org/10.1016/j.jmva.2010.06.012.

    Article  MATH  Google Scholar 

  • Yuan, Y., Zhu, H., Lin, W. and Marron, J. (2012). Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. Ser. B Stat. Methodol. 74, 4, 697–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Ziezold, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. Transactions of the Seventh Pragure Conference on Information Theory, Statistical Functions, Random Processes and of the Eightth European Meeting of Statisticians A:591–602. (Tech. Univ. Prague, Prague, 1974).

Download references

Funding

Rachel Oliver was partially funded by NSF CCF 1740858, TRIPODS. Rabi Bhattacharya was partially supported by the NSF grant DMS 1406872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Oliver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R., Oliver, R. Nonparametric Analysis of Non-Euclidean Data on Shapes and Images. Sankhya A 81, 1–36 (2019). https://doi.org/10.1007/s13171-018-0127-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-018-0127-9

Keywords and phrases

AMS (2000) subject classification

Navigation