Skip to main content
Log in

Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

In multivariate extreme value statistics, the estimation of probabilities of extreme failure sets is an important problem, with practical relevance for applications in several scientific disciplines. Some estimators have been introduced in the literature, though so far the typical bias issues that arise in application of extreme value methods and the non-robustness of such methods with respect to outliers were not addressed. We introduce a bias-corrected and robust estimator for small tail probabilities. The estimator is obtained from a second order model that is fitted to properly transformed bivariate observations by means of the minimum density power divergence technique. The asymptotic properties are derived under some mild regularity conditions and the finite sample performance is evaluated through an extensive simulation study. We illustrate the practical applicability of the method on a dataset from the actuarial context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu A., Harris I.R., Hjort N.L. and Jones M.C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika, 85, 549–559.

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J., Dierckx G. and Guillou A. (2011). Bias-reduced estimators for bivariate tail modelling. Insurance Math. Econom., 49, 18–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J., Joossens E. and Segers J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. J. Statist. Plann. Inference, 139, 2800–2815.

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J. and Vandewalle B. (2002). Some comments on the estimation of a dependence index in bivariate extreme value in statistics. Statist. Probab. Lett., 60, 265–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Charpentier A. and Juri A. (2006). Limiting dependence structures for tail events, with applications to credit derivatives. J. Appl. Probab., 43, 563–586.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciuperca G. and Mercadier C. (2010). Semi-parametric estimation for heavy tailed distributions. Extremes, 13, 55–87.

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan L. and de Ronde J. (1998). Sea and wind: multivariate extremes at work. Extremes, 1, 7–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Dekkers A.L.M., Einmahl J.H.J and de Haan L. (1989). A moment estimator for the index of an extreme-value distribution. Ann. Statist., 17, 1833–1855.

    Article  MathSciNet  MATH  Google Scholar 

  • Dierckx G., Goegebeur Y. and Guillou A. (2013). An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index. J. Multivariate Anal., 121, 70–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Dierckx G., Goegebeur Y. and Guillou A. (2014). Local robust and asymptotically unbiased estimation of conditional Pareto-type tails. Test, 23, 330–355.

    Article  MathSciNet  MATH  Google Scholar 

  • Draisma G., Drees H., Ferreira A. and de Haan L. (2004). Bivariate tail estimation: dependence in asymptotic independence. Bernoulli, 10, 251–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Drees H. (1998a). On smooth statistical tail functionals. Scand. J. Stat., 25, 187–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Drees H. (1998b). A general class of estimators of the extreme value index. J. Statist. Plann. Inference, 66, 95–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Dutang C., Goegebeur Y. and Guillou A. (2014). Robust and bias-corrected estimation of the coefficient of tail dependence. Insurance Math. Econom., 57, 46–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Feuerverger A. and Hall P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist., 27, 760–781.

    Article  MathSciNet  MATH  Google Scholar 

  • Fraga Alves M.I., Gomes M.I and de Haan L. (2003). A new class of semi-parametric estimators of the second order parameter. Port. Math., 60, 193–213.

    MathSciNet  MATH  Google Scholar 

  • Goegebeur Y., Beirlant J and de Wet T. (2010). Kernel estimators for the second order parameter in extreme value statistics. J. Statist. Plann. Inference, 140, 2632–2652.

    Article  MathSciNet  MATH  Google Scholar 

  • Goegebeur Y. and Guillou A. (2013). Asymptotically unbiased estimation of the coefficient of tail dependence. Scand. J. Stat., 40, 174–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes M.I. and Martins M.J. (2004). Bias reduction and explicit semi-parametric estimation of the tail index. J. Statist. Plann. Inference, 124, 361–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist., 3, 1163–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim M. and Lee S. (2008). Estimation of a tail index based on minimum density power divergence. J. Multivariate Anal., 99, 2453–2471.

    Article  MathSciNet  MATH  Google Scholar 

  • Ledford A.W. and Tawn J.A. (1997). Modelling dependence within joint tail regions. J. R. Stat. Soc. Ser. B, 59, 475–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng L. (1999). Estimation of the coefficient of tail dependence in bivariate extremes. Statist. Probab. Lett., 43, 399–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Pickands J. (1975). Statistical inference using extreme order statistics. Ann. Statist., 3, 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos A. and Ledford A.W. (2009). A new class of models for bivariate joint tails. J. R. Stat. Soc. Ser. B, 71, 219–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Weissman I. (1978). Estimation of parameters and larger quantiles based on the k largest observations. J. Amer. Statist. Assoc., 73, 812–815.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Goegebeur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutang, C., Goegebeur, Y. & Guillou, A. Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets. Sankhya A 78, 52–86 (2016). https://doi.org/10.1007/s13171-015-0078-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-015-0078-3

Keywords

AMS (2000) Subject Classification

Navigation