Advertisement

Sankhya A

, Volume 78, Issue 1, pp 133–153 | Cite as

Comparing Two Mixing Densities in Nonparametric Mixture Models

  • Denys Pommeret
Article
  • 86 Downloads

Abstract

In this paper we consider two nonparametric mixtures of quadratic natural exponential families with unknown mixing densities. We propose a statistic to test the equality of these mixing densities when the two natural exponential families are known. The test is based on moment characterizations of the distributions. The number of moments is retained automatically by a data driven technique. Some examples and simulations of implementation of the procedure are provided.

Keywords and phrases

Akaike’s rule Natural exponential families Nonparametric mixture Quadratic variance function Schwarz’s rule Smooth test 

AMS (2000) subject classification

Primary 62G10 Secondary 62G07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. Dover Publications.Google Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 6, 716–723.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Albers, W., Kallenberg, W. and Martini, F. (2001). Data driven rank tests for classes of tail alternatives. J. Am. Stat. Assoc. 96, 685–696.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Asmussen, S. and Albrecher, H. 2010 Ruin Probabilities. Advanced Series on Statistical Science Applied Probability. World Scientific.Google Scholar
  5. Bangert, M., Hennig, P. and Oelfke, U. (2010) Using an infinite von mises-fisher mixture model to cluster treatment beam directions in external radiation therapy. In: International Conference on Machine Learning and Applications.Google Scholar
  6. Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, Chichester.zbMATHGoogle Scholar
  7. Carleman, T. (1926). Les fonctions quasi analytiques. Collection de Monographies sur la Théorie des Fonctions, Gauthier-Villars, Paris.zbMATHGoogle Scholar
  8. Carroll, R., Ruppert, D., Stefanski, L. and Crainiceanu, C. (2010). Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition. Taylor & Francis.Google Scholar
  9. Chee, C.-S. and Wang, Y. (2013). Minimum quadratic distance density estimation using nonparametric mixtures. Comput. Stat. Data Anal. 57, 1, 1–16.MathSciNetCrossRefGoogle Scholar
  10. D’Agostino, R. B. and Stephens, M. A. (1986). Goodness-Of-Fit Techniques. Marcel Dekker, New York.zbMATHGoogle Scholar
  11. Denuit, M. (1997). A new distribution of poisson-type for the number of claims. ASTIN Bulletin 27, 229–242.CrossRefGoogle Scholar
  12. Doukhan, P., Pommeret, D. and Reboul, L. (2015). Data driven smooth test of comparison for dependent sequences. J. Multivar. Anal. 139, 147–165.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Dubey, A., Hwang, S., Rangel, C., Rasmussen, C., Ghahramani, Z. and Wild, D. L. (2004). Clustering protein sequence and structure space with infinite gaussian mixture models. World Scientific, 399–410.Google Scholar
  14. Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Am. Stat. Assoc. 91, 674–688.CrossRefzbMATHGoogle Scholar
  15. Ghattas, B., Pommeret, D., Reboul, L. and Yao, A. (2011). Data driven smooth test for paired populations. Journal of Statistical Planning and Inference 141, 1, 262–275.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ghosh, A. (2001). Testing equality of two densities using Neyman’s smooth test. Tech. rep., Department of Economics, University of Illinois.Google Scholar
  17. Griffin, J. E. (2010). Default priors for density estimation with mixture models. Bayesian Analysis 5, 1, 45–64.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Groeneboom, P. 1984 Estimating a Monotone Density. Report MS / Centrum voor Wiskunde en Informatica, Department of Mathematical Statistics. Stichting Math. Centrum.Google Scholar
  19. Hart, J. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.CrossRefzbMATHGoogle Scholar
  20. Inglot, T., Jurlewicz, T. and Ledwina, T. (1990). On neyman-type smooth tests of fit. Statistics 21, 549–568.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Inglot, T., Kallenberg, W. and Ledwina, T. (1997). Data-driven smooth tests for composite hypotheses. Ann. Stat. 25, 1222–1250.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Inglot, T. and Ledwina, T. (2006). Towards data driven selection of a penalty function for data driven neyman test. Linear Algebra Appl. 417, 124–133.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Janic-Wróblewska, J. and Ledwina, T. (2000). Data driven rank test for two-sample problem. Scand. J. Stat. 27, 281–297.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kallenberg, W. and Ledwina, T. (1995). On data-driven Neyman’s tests. Probab. Math. Stat. 15, 409–426.MathSciNetzbMATHGoogle Scholar
  25. Kallenberg, W. and Ledwina, T. (1995a). Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests. Ann. Stat. 23, 1594–1608.Google Scholar
  26. Ledwina, T. (1994). Data-driven version of Neyman’s smooth test of fit. J. Am. Stat. Assoc. 89, 1000–1005.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Lindsay, B. G. (1989). Moment matrices: Applications in mixtures. Ann. Stat. 17, 2, 722–740.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Morris, C. (1982). Natural exponential families with quadratic variance functions. Ann. Stat. 10, 65–80.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Munk, Axel S.J.-P.V.J.G.G. (2011). Neyman smooth goodness-of-fit tests for the marginal distribution of dependent data. Ann. Inst. Statist. Math. 63, 5, 939–959.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Neyman, J. (1937). Smooth test for goodness of fit. Skandinavisk Aktuarietidskrift 20, 149–199.zbMATHGoogle Scholar
  31. Pommeret, D. (2005). Distance of a mixture from its parent distribution. Sankhyā 67, 4, 699–714.MathSciNetzbMATHGoogle Scholar
  32. Rayner, J. and Best, D. (1989). Smooth Tests of Goodness of Fit. Oxford University Press, New York.zbMATHGoogle Scholar
  33. Rayner, J. and Best, D. (2001). A Contingency Table Approach to Nonparametric Testing. Chapman and Hall/CRC.Google Scholar
  34. Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6.2, 461–464.MathSciNetCrossRefzbMATHGoogle Scholar
  35. van and de Geer, S. (2003). Asymptotic theory for maximum likelihood in nonparametric mixture models. Comput. Stat. Data Anal. 41, 453–464.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Wang, J. (2007). A linearization procedure and a vdm/ecm algorithm for penalized and constrained nonparametric maximum likelihood estimation for mixture models. Comput. Stat. Data Anal. 51, 2946–2957.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Wang, X.-F. and Wang, B. (2011). Deconvolution estimation in measurement error models: The r package decon. J. Stat. Softw. 39, 10, 1–24.CrossRefGoogle Scholar
  38. Wylupek, G. (2010). Data driven k sample test. Technometrics 52, 107–123.MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Statistical Institute 2015

Authors and Affiliations

  1. 1.Institut de Mathématiques de MarseilleAix Marseille UniversitéMarseille Cedex 9France

Personalised recommendations