On the Local Linear Modelization of the Conditional Distribution for Functional Data
Abstract
In this paper, we investigate the problem of the local linear estimation of the cumulative distribution function of a real random variable Y conditioned by a functional variable X (valued in an infinite dimensional space). The almost-complete and the mean square consistencies, with rates, of the constructed estimator are stated. We precise that the exact expression involved in the leading terms of the mean squared error is given. We point out, also, that the accuracy of our asymptotic results leads to interesting perspectives from a practical point of view. Thus, we discuss the features of our functional local modeling and the applicability of our asymptotic result on some statistical problems such as the choice of the smoothing parameters and the determination of confidence intervals. Moreover, a simulation study has been conducted in order to highlight, on a finite sample, the superiority of our method to the standard kernel method, in the functional framework.
Keywords and phrases.
Functional data local linear estimator conditional distribution nonparametric model small balls probabilityAMS (2000) subject classification.
Primary 62G05 Secondary 62G07 62G08 62G35 62G20Preview
Unable to display preview. Download preview PDF.
References
- Barrientos-Marin, J., Ferraty, F. and Vieu, P. (2010). Locally Modelled Regression and Functional Data. J. of Nonparametric Statistics 22, 617–632.MathSciNetCrossRefMATHGoogle Scholar
- Benhenni, K., Ferraty, F., Rachdi, M. and Vieu, P. (2007). Local smoothing regression with functional data. Computational Statistics 22, 353–369.MathSciNetCrossRefGoogle Scholar
- Benhenni, K., Griche-Hedli, S. and Rachdi, M (2010). Estimation of the regression operator from functional fixed-design with correlated errors. J. Multivariate Anal. 101, 476–490.MathSciNetCrossRefMATHGoogle Scholar
- Boj, E., Delicado, P. and Fortiana, J. (2010). Distance-based local linear regression for functional predictors. Computational Statistics and Data Analysis 54, 429–437.MathSciNetCrossRefMATHGoogle Scholar
- Bosq, D. (2000) Linear Processes in Function Spaces: Theory and applications. Lecture Notes in Statistics, 149, Springer.Google Scholar
- Baìllo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response. J. of Multivariate Analysis 100, 102–111.CrossRefMATHGoogle Scholar
- De Gooijer, J.G. and Gannoun, A. (2000). Nonparametric conditional predictive regions for time series. Computational Statistics & Data Analysis 33, 259–275.CrossRefMATHGoogle Scholar
- Demongeot, J., Laksaci, A., Madani, F. and Rachdi, M. (2011) A fast functional locally modeled conditional density and mode for functional time-series. Recent Advances in Functional Data Analysis and Related Topics, Contributions to Statistics, 2011, Pages 85-90, doi:10.1007/978-3-7908-2736-1_13, Physica-Verlag/Springer.
- Demongeot, J., Laksaci, A., Madani, F. and Rachdi, M. (2013). Functional data: local linear estimation of the conditional density and its application. Statistics 47, 26–44.MathSciNetCrossRefMATHGoogle Scholar
- El Methni, M. and Rachdi, M. (2011). Local weighted average estimation of the regression operator for functional data. Communications in Statistics-Theory and Methods 40, 3141–3153.MathSciNetCrossRefMATHGoogle Scholar
- Fan, J. and Yao, Q. (2003). Nolinear Time Series: Nonparametric and Parametric Methods. Springer-Verlag, New York.Google Scholar
- Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87, 998–1004.MathSciNetCrossRefMATHGoogle Scholar
- Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83, 189–206.MathSciNetCrossRefMATHGoogle Scholar
- Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman & Hall, London.MATHGoogle Scholar
- Fan, J. and Yim, T.-H. (2000). A cross-validation method for estimating conditional densities. Biometrika 91, 819–834.MathSciNetCrossRefGoogle Scholar
- Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables. J. of Statistical Planning and Inference 140, 335–352.MathSciNetCrossRefMATHGoogle Scholar
- Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the Validity of the Bootstrap in Non-Parametric Functional Regression. Scandinavian Journal of Statistics 37, 286–306.CrossRefMATHGoogle Scholar
- Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects. Aust. N. Z. J. Stat. 49, 267–286.MathSciNetCrossRefMATHGoogle Scholar
- Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: Theory and Practice. Springer Series in Statistics, New York.Google Scholar
- Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating some characteristics of the conditional distribution in nonparametric functional models. Stat. Inference Stoch. Process. 9, 47–76.MathSciNetCrossRefMATHGoogle Scholar
- Hall, P., Wolef, R.C.L. and Yao, Q. (1999). Methods for estimating a conditional distribution function. J. Amer. Statist. Assoc. 94, 154–163.MathSciNetCrossRefMATHGoogle Scholar
- Jirina, M. (1962). Conditional probabilities on σ-algebras with countable basis. Select. Transl. Math. Stat. Probab. 2, 79–86.MathSciNetMATHGoogle Scholar
- Jirina, M. (1959). On regular conditional probabilities. Czechoslovak Mathematical Journal 9, 445–451.MathSciNetGoogle Scholar
- Laksaci, A., Madani, F. and Rachdi, M. (2013). Kernel conditional density estimation when the regressor is valued in a semi-metric space. Commun. in Statist.–Theory and Meth. 42, 3544–3570.MathSciNetCrossRefMATHGoogle Scholar
- Marron, J.S. and Wand, M.P. (1992). Exact mean integrated squared error. Ann. Statist. 20, 1919–1932.MathSciNetCrossRefGoogle Scholar
- Ouassou, I. and Rachdi, M. (2010). Stein type estimation of the regression operator for functional data. Advances and Applications in Statistical Sciences 1, 233–250.MathSciNetMATHGoogle Scholar
- Polonik, W. and Yao, Q. (2008). Testing for multivariate volatility functions using minimum volume sets and inverse regression. Extended version of paper in Journal of Econometrics 147, 151–162.MathSciNetGoogle Scholar
- Rachdi, M., Laksaci, A., Demongeot, J., Abdali, A. and Madani, F. (2014). Theoretical and practical aspects on the quadratic error in the local linear estimation of the conditional density for functional data. Computational Statistics and Data Analysis 73, 53–68.MathSciNetCrossRefGoogle Scholar
- Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection. J. Stat. Plann. Inference. 137, 2784–2801.MathSciNetCrossRefMATHGoogle Scholar
- Ramsay, J.O. and Silverman, B.W. (2002). Applied functional data analysis: Methods and case studies. Springer Series in Statistics, New York.Google Scholar
- Ramsay, J.O. and Silverman, B.W. (2002). Functional data analysis. Springer Series in Statistics, New York.MATHGoogle Scholar
- Uspensky, J.V. (1937). Introduction to Mathematical Probability. McGraw-Hill Book Company.Google Scholar
- Yu, K. and Jones, M.C. (1997). A comparison of local constant and local linear regression quantile estimators. Computational Statistics and Data Analysis 25, 159–166.CrossRefMATHGoogle Scholar
- Yu, K. and Jones, M. C. (1998). Local Linear Quantile Regression. J. Amer. Statist. Assoc. 93, 228–237.MathSciNetCrossRefMATHGoogle Scholar