Skip to main content

On the use of antithetic variables to improve over the ranked set sampling estimator of the population mean

Abstract

In the ranked set sampling algorithm a sample of size n 2 is available. The data can be ranked without measurements. A subsample of size n is created using the information given by the ranks. The population mean is estimated by the subsample mean. In this paper, we investigate other ways for creating the subsample. To this end we introduce new sampling algorithms using the idea of antithetic variables. We propose a class of random estimators for the population mean which covers the ranked set sampling and simple random sampling estimators as special cases. A general dominance result leading to a suffcient condition for a random estimator \(\hat \mu _1\) to dominate another random estimator \(\hat \mu _2\) is established. The theory is done in a completely nonparametric basis and without making any assumption about the distribution of the underlying population. Finally, the superiority of our proposed estimators over the ranked set sampling estimator is established and the obtained results are evaluated through examples and numerical studies.

This is a preview of subscription content, access via your institution.

References

  • Al-Nasser, A.D. (2007). L-Ranked Set Sampling: A generalization procedure for robust visual sampling. Comm. Statist. Theory Methods, 36, 33–43.

    MathSciNet  MATH  Google Scholar 

  • Al-Saleh, M.F. and Al-Omari, A. (2002). Multistage ranked set sampling. J. Statist. Plann. Inference, 102, 273–286.

    MathSciNet  MATH  Article  Google Scholar 

  • Al-Saleh, M.F. and Al-Kadiri, M.A. (2000). Double ranked set sampling, Statist. Probab. Lett., 48, 205–212.

    MathSciNet  MATH  Article  Google Scholar 

  • Bhoj, D.S. (1997). New parametric ranked set sampling. J. Appl. Statist. Sci., 6, 275–289.

    MathSciNet  MATH  Google Scholar 

  • Chen, Z., Bai, Z.D. and Sinha, B.K. (2004). Ranked Set Sampling: Theory and Applications. Lecture Notes in Statistics, 176. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Dell, T.R. (1969). The theory of some applications of ranked set sampling. Ph.D. Thesis, University of Georgia.

  • Dell, T.R. and Clutter, J.L. (1972). Ranked set sampling with order statistics background. Biometrics, 28, 545–553.

    MATH  Article  Google Scholar 

  • Hossain, S.S. and Muttlak, H.A. (1999). Paired ranked set sampling: A more effcient procedure. Environmetrics, 10, 195–212.

    Article  Google Scholar 

  • Hossain, S.S. and Muttlak, H.A. (2001). Selected ranked set sampling. Aust. N. Z. J. Stat., 43, 311–325.

    MathSciNet  MATH  Article  Google Scholar 

  • Kaur, A., Patil, G.P., Sinha, A.K. and Taillie, C. (1995). Ranked set sampling: An annotated bibliography. Environ. Ecol. Stat., 2, 25–54.

    Article  Google Scholar 

  • Li., D., Sinha, B.K. and Perron, F. (1999). Random selection in ranked set sampling and its applications. J. Statist. Plann. Inference, 76, 185–201.

    MathSciNet  MATH  Article  Google Scholar 

  • McIntyre, G.A. (1952). A method for unbiased selective sampling, using ranked sets. Aust. J. Agric. Res., 3, 385–390.

    Article  Google Scholar 

  • Mutllak, H.A. (1997). Median ranked set sampling. J. Appl. Statist. Sci., 6, 245–255.

    Google Scholar 

  • Samawi, H., Abu-Daayeh, H.A. and Ahmed, S. (1996). Estimating the population mean using extreme ranked set sampling. Biom. J., 38, 577–586.

    MATH  Article  Google Scholar 

  • Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Statist. Math., 20, 1–31.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafari Jozani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jozani, M.J., Perron, F. On the use of antithetic variables to improve over the ranked set sampling estimator of the population mean. Sankhya A 73, 142–161 (2011). https://doi.org/10.1007/s13171-011-0004-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-011-0004-2

AMS (2000) subject classification

  • Primary 62C05, 62D05, 62G05

Keywords and phrases

  • Antithetic variables
  • ranked set sampling
  • simple random sampling
  • random estimators
  • nonparametric estimation