Skip to main content

Properties of a block bootstrap under long-range dependence

Abstract

The block bootstrap has been largely developed for weakly dependent time processes and, in this context, much research has focused on the large-sample properties of block bootstrap inference about sample means. This work validates the block bootstrap for distribution estimation with stationary, linear processes exhibiting strong dependence. For estimating the sample mean’s variance under long-memory, explicit expressions are also provided for the bias and variance of moving and non-overlapping block bootstrap estimators. These differ critically from the weak dependence setting and optimal blocks decrease in size as the strong dependence increases. The findings in distribution and variance estimation are then illustrated using simulation.

This is a preview of subscription content, access via your institution.

References

  • Adenstedt, R.K. (1974). On large-sample estimation for the mean of a stationary sequence. Ann. Statist., 2, 1095–1107.

    MathSciNet  MATH  Article  Google Scholar 

  • Andrews D.W.K. and Sun, Y. (2004). Adaptive local polynomial Whittle estimation of long-range dependence. Econometrica, 72, 569–614.

    MathSciNet  MATH  Article  Google Scholar 

  • Andrews, D.W.K., Lieberman, O. and Marmer, V. (2006). Higher-Order Improvements of the Parametric Bootstrap for Long-memory Gaussian processes. J. Econometrics, 133, 673–702.

    MathSciNet  Article  Google Scholar 

  • Beran, J. (1994). Statistical methods for long memory processes. Chapman & Hall, London.

    Google Scholar 

  • Brockwell, P.J. and Davis, R.A. (1991). Time series: theory and methods. Second Edition, Springer, New York.

    Book  Google Scholar 

  • Buhlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3, 123–148.

    MathSciNet  Article  Google Scholar 

  • Carlstein, E. (1986). The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Ann. Statist., 14, 1171–1179.

    MathSciNet  MATH  Article  Google Scholar 

  • Choi, E. and Hall, P. (2000). Bootstrap confidence regions constructed from autoregressions of arbitrary order. J. R. Stat. Soc., Ser. B, 62, 461–477.

    MathSciNet  MATH  Article  Google Scholar 

  • Davydov, Y.A. (1970). The invariance principle for stationary processes. Theor. Prob. Appl., 15, 487–498.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist., 7, 1–26.

    MathSciNet  MATH  Article  Google Scholar 

  • Fay, G., Moulines, E. and Soulier, P. (2004). Edgeworth expansions for linear statistics of possibly long-range-dependent linear processes. Statist. Probab. Lett., 66, 275–288.

    MathSciNet  MATH  Article  Google Scholar 

  • Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of longmemory time series models. J. Time Series Anal., 4, 221–238.

    MathSciNet  MATH  Article  Google Scholar 

  • Giraitis, L., Robinson, P.M. and Surgailis, D. (1999). Variance-type estimation of long memory. Stochastic Process. Appl., 80, 1–24.

    MathSciNet  MATH  Article  Google Scholar 

  • Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Series Anal., 1, 15–29.

    MathSciNet  MATH  Article  Google Scholar 

  • Hall, P., Horowitz, J.L. and Jing, B.-Y. (1996). On blocking rules for the bootstrap with dependent data. Biometrika, 82, 561–574.

    MathSciNet  Article  Google Scholar 

  • Hall, P., Jing, B.-Y. and Lahiri, S.N. (1998). On the sampling window method for long-range dependent data. Statist. Sinica, 8, 1189–1204.

    MathSciNet  MATH  Google Scholar 

  • Hidalgo, J. (2003). An alternative bootstrap to moving blocks for time series regression models. J. Econometrics, 117, 369–399.

    MathSciNet  MATH  Article  Google Scholar 

  • Hosking, J.R.M. (1981). Fractional differencing. Biometrika, 68, 165–176.

    MathSciNet  MATH  Article  Google Scholar 

  • Hurvich, C.M., Deo, R. and Brodsky, J. (1998). The mean square error of Geweke and Porter-Hudak’s estimator of the memory parameter of a long memory time series. J. Time Series Anal., 19, 19–46.

    MathSciNet  MATH  Article  Google Scholar 

  • Ibragimov, I. A. and Linnik, Y.V. (1971). Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen.

    MATH  Google Scholar 

  • Kapetanios, G. and Psaradakis, Z. (2006). Sieve bootstrap for strongly dependent stationary processes. Working paper 552, Dept. of Economics, Queen Mary, University of London.

  • Kreiss, J.P. and Paparoditis, E. (2003). Autogressive aided periodogram bootstrap for time series. Ann. Statist., 31, 1923–1955.

    MathSciNet  MATH  Article  Google Scholar 

  • Künsch, H.R. (1987). Statistical aspects of self-similar processes. In Proceedings of the 1st World Congress of the Bernoulli Society, 1, (Yu. A. Prohorov and V. V, Sazanov, eds.), 67–74. VNU Science Press, Utrecht.

    Google Scholar 

  • Künsch, H.R. (1989). The jackknife and bootstrap for general stationary observations. Ann. Statist., 17, 1217–1261.

    MathSciNet  MATH  Article  Google Scholar 

  • Lahiri, S.N. (1993). On the moving block bootstrap under long range dependence. Statist. Probab. Lett., 18, 405–413.

    MathSciNet  MATH  Article  Google Scholar 

  • Lahiri, S.N. (1999). Theoretical comparisons of block bootstrap methods. Ann. Statist., 27, 386–404.

    MathSciNet  MATH  Article  Google Scholar 

  • Lahiri, S.N. (2003). Resampling methods for dependent data. Springer, New York.

    MATH  Google Scholar 

  • Lahiri, S.N., Furukawa, K. and Lee, Y-D. (2007). A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods. Stat. Methodol., 4, 292–321.

    MathSciNet  Article  Google Scholar 

  • Liu, R.Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap, (R. LePage and L. Billard, eds.), 225–248. John Wiley & Sons, New York.

    Google Scholar 

  • Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422–437.

    MathSciNet  MATH  Article  Google Scholar 

  • McElroy, T. and Politis, D.N. (2007). Self-normalization for heavy-tailed time series with long memory. Statist. Sinica, 17, 199–220.

    MathSciNet  MATH  Google Scholar 

  • Moulines, E. and Soulier, P. (2003). Semiparametric spectral estimation for fractional processes. In P. Doukhan, G. Oppenheim and M. S. Taqqu (eds.), Theory and Applications of Long-range Dependence, (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.), 251–301. Birkhäuser, Boston.

    Google Scholar 

  • Nordman, D.J. and Lahiri, S.N. (2005). Validity of the sampling window method for long-range dependent linear processes. Econometric Theory, 21, 1087–1111.

    MathSciNet  MATH  Article  Google Scholar 

  • Politis, D.N. and White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Rev., 23, 53–70.

    MathSciNet  MATH  Article  Google Scholar 

  • Poskitt, D.S. (2007). Properties of the sieve bootstrap for fractionally integrated and non-invertible processes. J. Time Series Anal., 29, 224–250.

    MathSciNet  Article  Google Scholar 

  • Robinson, P. M. (1995a). Gaussian semiparametric estimation of long range dependence. Ann. Statist., 23, 1630–1661.

    MathSciNet  MATH  Article  Google Scholar 

  • Robinson, P. M. (1995b). Log-periodogram regression of time series with long range dependence. Ann. Statist., 23, 1048–1072.

    MathSciNet  MATH  Article  Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of the Efron’s bootstrap. Ann. Statist., 9, 1187–1195.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y.M., Nordman, D.J. Properties of a block bootstrap under long-range dependence. Sankhya A 73, 79–109 (2011). https://doi.org/10.1007/s13171-011-0003-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-011-0003-3

AMS (2000) subject classification

  • Primary 62M10
  • 62G20

Keywords and phrases

  • Block size
  • confidence interval
  • sample average
  • variance estimation