Sankhya A

, Volume 72, Issue 1, pp 37–63 | Cite as

Big Vee: The story of a function, an algorithm, and three mathematical worlds

  • R. Purves
  • W. Sudderth


The Dubins-Savage theory of gambling takes place in a world of finitely additive probability measures defined on all subsets of a set of arbitrary cardinality. When the theory is specialized to a more conventional world of countably additive measures defined on the Borel subsets of a standard Borel space, the question arises whether the gambler is harmed when restricted to measurable strategies; that is, whether the optimal reward function V remains the same. The answer to this question uses methods from the world of descriptive set theory. Ashok Maitra was perhaps the unique person who was completely at home in all three of these mathematical worlds.

Keywords and phrases

Gambling house finite additivity Borel set analytic set inductive definability stochastic game 

AMS (2000) subject classification

Primary 60G40, 91A60, 93E20, 54H05, 03D70, 28A12, 28A20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhaskara Rao, K.P.S. and Bhaskara Rao, M. (1983). Theory of charges: A Study of Finitely Additive Measures. Academic Press, London.zbMATHGoogle Scholar
  2. Blackwell, D., Freedman, D. and Orkin, M. (1974). The optimal reward operator in dynamic programming. Ann. Probab., 2, 926–941.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Blackwell, D. (1989). Operator solution of infinite Gδ games of imperfect information. In Probability, Statistics, and Mathematics Papers in Honor of Samuel Karlin, (T.W. Anderson, K. Athreya, and D.H. Iglehart, eds.). Academic Press, New York, 83–87.Google Scholar
  4. Chen, R. (1975). A note on the Dubins-Savage utility of a strategy. Israel J. Math., 21, 1–6.CrossRefMathSciNetGoogle Scholar
  5. Dellacherie, C. and Meyer, P.A. (1975). Ensembles analytiques et temps d’arrêt. In Seminaire de Probabilités IX, Lecture Notes in Mathematics 465. Springer-Verlag, Berlin, 373–389.Google Scholar
  6. Dubins, L.E. (1974). On Lebesgue-like extensions of finitely additive measures. Ann. Probab., 2, 226–241.Google Scholar
  7. Dubins, L., Maitra, A., Purves, R. and Sudderth, W. (1989). Measurable, nonleavable gambling problems. Israel J. Math., 67, 257–271.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Dubins, L.E. and Savage, L.J. (1965). How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw-Hill, New York. (2nd edition (1976). Inequalities for stochastic processes. Dover, New York.)zbMATHGoogle Scholar
  9. Dunford, N. and Schwartz, J.T. (1958). Linear Operators, Part I: General Theory. Interscience Publishers, New York.Google Scholar
  10. Kechris, A.S. (1995). Classical Descriptive Set Theory. Springer-Verlag, New York.zbMATHGoogle Scholar
  11. Louveau, A. (1981–82). Capacitabilité et sélections Boreliennes. In Séminaire Initiation à l’Analyse 21, Publications Mathématiques de l’Université Pierre et Marie Curie, 54, 19-01–19-21.Google Scholar
  12. Maitra, A. and Parthasarathy, T. (1970). On stochastic games. J. Optim. Theory Appl., 5, 289–300.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Maitra, A. and Parthasarathy, T. (1971). On stochastic games, II. J. Optim. Theory Appl., 8, 154–160.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Maitra, A., Purves, R. and Sudderth, W. (1990). Leavable gambling problems with unbounded utilities. Trans. Amer. Math. Soc., 320, 543–567.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Maitra, A., Purves, R. and Sudderth, W. (1991a). A Borel measurable version of Konig’s Lemma for random paths. Ann. Probab., 19, 423–451.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Maitra, A., Purves, R. and Sudderth, W. (1991b). A capacitability theorem in finitely additive gambling. Rend. Mat. Appl. (7), 11, 819–842.zbMATHMathSciNetGoogle Scholar
  17. Maitra, A., Purves, R. and Sudderth, W. (1992). A capacitability theorem in measurable gambling theory. Trans. Amer. Math. Soc., 333, 221–249.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Maitra, A.P. and Sudderth, W.D. (1992). An operator solution of stochastic games. Israel J. Math., 78, 33–49.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Maitra, A.P. and Sudderth, W.D. (1993). Borel stochastic games with lim sup payoff. Ann. Probab., 21, 861–885.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Maitra, A.P. and Sudderth, W.D. (1996). Discrete Gambling and Stochastic Games. Springer, New York.zbMATHGoogle Scholar
  21. Maitra, A.P. and Sudderth, W.D. (1998). Finitely additive stochastic games with Borel measurable payoffs. Internat. J. Game Theory, 27, 257–267.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Maitra, A. and Sudderth, W. (2003). Borel stay-in-a-set games. Internat. J. Game Theory, 32, 97–108.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Maitra, A. and Sudderth, W. (2007). Subgame-perfect equilibria for stochastic games. Math. Oper. Res., 32, 711–722.zbMATHCrossRefMathSciNetGoogle Scholar
  24. Martin, D.A. (1998). The determinacy of Blackwell games. J. Symbolic Logic, 63, 1565–1581.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Meyer, P.A. and Traki, M (1971). Réduites et jeux de hasard. In Seminaire de Probabilités VII, Lecture Notes in Mathematics, 321. Springer-Verlag, Berlin, 155–171.Google Scholar
  26. Monticino, M. (1991). The adequacy of universal strategies in analytic gambling problems. Math. Oper. Res., 16, 21–41.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Moschovakis, Y.N. (1980). Descriptive Set Theory. North-Holland, Amsterdam.zbMATHGoogle Scholar
  28. Purves, R. and Sudderth, W. (1976). Some finitely additive probability. Ann. Probab., 4, 259–276.zbMATHCrossRefMathSciNetGoogle Scholar
  29. Secchi, P. and Sudderth, W. (2001). Stay-in-a-set games. Internat. J. Game Theory, 30, 479–490.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Strauch, R. (1967). Measurable gambling houses. Trans. Amer. Math. Soc., 126, 64–72.MathSciNetGoogle Scholar
  31. Sudderth, W. (1971). On measurable gambling problems. Ann. Math. Statist., 42, 260–269.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Statistical Institute 2010

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.University of MinnesotaMinneapolisUSA
  3. 3.Department of StatisticsUniversity of CaliforniaBerkeleyUSA
  4. 4.School of StatisticsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations