Skip to main content
Log in

Frailty mediating the causality between leucocyte telomere length and mortality: a cohort study of 440,551 UK Biobank participants

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Introduction

Previous studies reported leucocyte telomere length (LTL) and frailty were associated with mortality, but it remains unclear whether frailty serves as a mediator in the relationship between leucocyte telomere length and mortality risk. This study aimed to evaluate how measuring LTL and frailty can support early monitoring and prevention of risk of mortality from the prospective of predictive, preventive, and personalized medicine (PPPM/3PM).

Methods

We included 440,551 participants from the UK Biobank between the baseline visit (2006–2010) and November 30, 2022. The time-dependent Cox proportional hazards model was conducted to assess the association between LTL and frailty index with the risk of mortality. Furthermore, we conducted causal mediation analyses to examine the extent to which frailty mediated the association between LTL and mortality.

Results

During a median follow-up of 13.74 years, each SD increase in LTL significantly decreased the risk of all-cause [hazard ratio (HR): 0.94, 95% confidence interval (CI): 0.93–0.95] and CVD-specific mortality (HR: 0.92, 95% CI: 0.90–0.95). The SD increase in FI elevated the risk of all-cause (HR: 1.35, 95% CI: 1.34–1.36), CVD-specific (HR: 1.47, 95% CI: 1.44–1.50), and cancer-specific mortality (HR: 1.22, 95% CI: 1.20–1.24). Frailty mediated approximately 10% of the association between LTL and all-cause and CVD-specific mortality.

Conclusions

Our results indicate that frailty mediates the effect of LTL on all-cause and CVD-specific mortality. There findings might be valuable to predict, prevent, and reduce mortality through primary prevention and healthcare in context of PPPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

This research was conducted using the UK Biobank study under Application Number 95259. Data from UK Biobank are available on application at www.ukbiobank.ac.uk/register-apply.

Code availability

Data are available on reasonable request from the corresponding author.

Abbreviations

CI:

Confidence interval

CVD:

Cardiovascular diseases

FI:

Frailty index

FP:

Frailty phenotype

HR:

Hazard ratio

IQR:

Interquartile range

LTL:

Leucocyte telomere length

NDE:

Natural direct effect

NIE:

Natural indirect effect

PPPM/3PM:

Predictive, preventive, and personalized medicine

SD:

Standard deviation

TDI:

Townsend deprivation index

TE:

Total effect

References

  1. Causes of Death. Our World in Data. https://ourworldindata.org/causes-of-death. Accessed 2 Aug 2023.

  2. Beard JR, Officer A, de Carvalho IA, Sadana R, Pot AM, Michel JP, et al. The world report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387(10033):2145–54. https://doi.org/10.1016/s0140-6736(15)00516-4.

    Article  PubMed  Google Scholar 

  3. Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, et al. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385(9967):549–62. https://doi.org/10.1016/s0140-6736(14)61347-7.

    Article  PubMed  Google Scholar 

  4. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, Preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5(1):6. https://doi.org/10.1186/1878-5085-5-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive Preventive and Personalised Medicine. EPMA J. 2021;12(4):403–33. https://doi.org/10.1007/s13167-021-00253-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7(1):23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Golubnitschaja O, Costigliola V. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Deng X, Lin D, Yang P, Wu S, Wang X, et al. Predicting 1-, 3-, 5-, and 8-year all-cause mortality in a community-dwelling older adult cohort: relevance for predictive, preventive, and personalized medicine. EPMA J. 2023;14(4):713–26. https://doi.org/10.1007/s13167-023-00342-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tian Q, Chen S, Zhang J, Li C, Wu S, Wang Y, et al. Ideal cardiovascular health metrics and life expectancy free of cardiovascular diseases: a prospective cohort study. Epma j. 2023;14(2):185–99. https://doi.org/10.1007/s13167-023-00322-8.

    Article  PubMed  Google Scholar 

  10. Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 2005;579(4):859–62. https://doi.org/10.1016/j.febslet.2004.11.036.

    Article  CAS  PubMed  Google Scholar 

  11. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://doi.org/10.1126/science.aab3389.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194-8 https://doi.org/10.1038/nature02118

  13. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34. https://doi.org/10.1146/annurev.genet.41.110306.130350.

    Article  CAS  PubMed  Google Scholar 

  14. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44. https://doi.org/10.1016/s0968-0004(02)02110-2.

    Article  Google Scholar 

  15. Deng Y, Li Q, Zhou F, Li G, Liu J, Lv J, et al. Telomere length and the risk of cardiovascular diseases: a Mendelian randomization study. Front Cardiovasc Med. 2022;9:1012615. https://doi.org/10.3389/fcvm.2022.1012615.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hunt SC, Kark JD, Aviv A. Association between shortened leukocyte telomere length and cardio-metabolic outcomes. Circ Cardiovasc Genet. 2015;8(1):4–7. https://doi.org/10.1161/circgenetics.114.000964.

    Article  PubMed  Google Scholar 

  17. Rossiello F. Jurk D, Passos JF, d’Adda di Fagagna F Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022;24(2):135–47. https://doi.org/10.1038/s41556-022-00842-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9(2):117–26. https://doi.org/10.1016/s2213-8587(20)30365-x.

    Article  CAS  PubMed  Google Scholar 

  19. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstätter A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA. 2010;304(1):69–75. https://doi.org/10.1001/jama.2010.897.

    Article  CAS  PubMed  Google Scholar 

  20. Reddel RR. Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des. 2014;20(41):6361–74. https://doi.org/10.2174/1381612820666140630101047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider CV, Schneider KM, Teumer A, Rudolph KL, Hartmann D, Rader DJ, et al. Association of telomere length with risk of disease and mortality. JAMA Intern Med. 2022;182(3):291–300. https://doi.org/10.1001/jamainternmed.2021.7804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/s0140-6736(12)62167-9.

    Article  PubMed  Google Scholar 

  23. Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging. 2014;9:433–41. https://doi.org/10.2147/cia.S45300.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cesari M, Gambassi G, van Kan GA, Vellas B. The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing. 2014;43(1):10–2. https://doi.org/10.1093/ageing/aft160.

    Article  PubMed  Google Scholar 

  25. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  26. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health. 2018;3(7):e323–32. https://doi.org/10.1016/s2468-2667(18)30091-4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brunner-La Rocca HP, Fleischhacker L, Golubnitschaja O, Heemskerk F, Helms T, Hoedemakers T, et al. Challenges in personalised management of chronic diseases-heart failure as prominent example to advance the care process. EPMA J. 2015;7(1):2. https://doi.org/10.1186/s13167-016-0051-9.

    Article  PubMed  Google Scholar 

  28. Zubor P, Kubatka P, Kapustova I, Miloseva L, Dankova Z, Gondova A, et al. Current approaches in the clinical management of pregnancy-associated breast cancer-pros and cons. EPMA J. 2018;9(3):257–70. https://doi.org/10.1007/s13167-018-0139-5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA, et al. Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J. 2020;11(3):399–418. https://doi.org/10.1007/s13167-020-00214-1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  31. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573–7. https://doi.org/10.7326/0003-4819-147-8-200710160-00010.

    Article  Google Scholar 

  32. Codd V, Denniff M, Swinfield C, Warner SC, Papakonstantinou M, Sheth S, et al. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nat Aging. 2022;2(2):170–9. https://doi.org/10.1038/s43587-021-00166-9.

    Article  CAS  PubMed  Google Scholar 

  33. Williams DM, Jylhävä J, Pedersen NL, Hägg S. A frailty index for UK Biobank participants. J Gerontol A Biol Sci Med Sci. 2019;74(4):582–7. https://doi.org/10.1093/gerona/gly094.

    Article  PubMed  Google Scholar 

  34. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24. https://doi.org/10.1186/1471-2318-8-24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao X, Li X, Zhang J, Sun X, Yang G, Zhao Y, et al. Associations between frailty and the increased risk of adverse outcomes among 38,950 UK Biobank participants with prediabetes: prospective cohort study. JMIR Public Health Surveill. 2023;9:e45502. https://doi.org/10.2196/45502.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Black DJPP. Health and deprivation. J R Coll Gen Pract. 1988;38(310):234.

    PubMed Central  Google Scholar 

  37. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137–50. https://doi.org/10.1037/a0031034.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ananth CV, VanderWeele TJ. Placental abruption and perinatal mortality with preterm delivery as a mediator: disentangling direct and indirect effects. Am J Epidemiol. 2011;174(1):99–108. https://doi.org/10.1093/aje/kwr045.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011;20(1):40–9. https://doi.org/10.1002/mpr.329.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haapanen MJ, Perälä MM, Salonen MK, Guzzardi MA, Iozzo P, Kajantie E, et al. Telomere length and frailty: the Helsinki birth cohort study. J Am Med Dir Assoc. 2018;19(8):658–62. https://doi.org/10.1016/j.jamda.2018.05.011.

    Article  PubMed  Google Scholar 

  41. Ortiz-Ramírez M, Sánchez-García S, García-Dela Torre P, Reyes-Maldonado E, Sánchez-Arenas R, Rosas-Vargas H. Telomere shortening and frailty in Mexican older adults. Geriatr Gerontol Int. 2018;18(8):1286–92. https://doi.org/10.1111/ggi.13463.

    Article  PubMed  Google Scholar 

  42. Bountziouka V, Nelson CP, Codd V, Wang Q, Musicha C, Allara E, et al. Association of shorter leucocyte telomere length with risk of frailty. J Cachexia Sarcopenia Muscle. 2022;13(3):1741–51. https://doi.org/10.1002/jcsm.12971.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuo CL, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell. 2019;18(6):e13017. https://doi.org/10.1111/acel.13017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emami M, Agbaedeng TA, Thomas G, Middeldorp ME, Thiyagarajah A, Wong CX, et al. Accelerated biological aging secondary to cardiometabolic risk factors is a predictor of cardiovascular mortality: a systematic review and meta-analysis. Can J Cardiol. 2022;38(3):365–75. https://doi.org/10.1016/j.cjca.2021.10.012.

    Article  PubMed  Google Scholar 

  45. Kodali HP, Borrell LN. Telomere length and mortality risk among adults in the United States: The role of age and race and ethnicity. Ann Epidemiol. 2021;63:68–74. https://doi.org/10.1016/j.annepidem.2021.07.013.

    Article  PubMed  Google Scholar 

  46. Samavat H, Luu HN, Beckman KB, Jin A, Wang R, Koh WP, et al. Leukocyte telomere length, cancer incidence and all-cause mortality among Chinese adults: Singapore Chinese Health Study. Int J Cancer. 2021;148(2):352–62. https://doi.org/10.1002/ijc.33211.

    Article  CAS  PubMed  Google Scholar 

  47. Fan J, Yu C, Guo Y, Bian Z, Sun Z, Yang L, et al. Frailty index and all-cause and cause-specific mortality in Chinese adults: a prospective cohort study. Lancet Public Health. 2020;5(12):e650–60. https://doi.org/10.1016/s2468-2667(20)30113-4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dugravot A, Fayosse A, Dumurgier J, Bouillon K, Rayana TB, Schnitzler A, et al. Social inequalities in multimorbidity, frailty, disability, and transitions to mortality: a 24-year follow-up of the Whitehall II cohort study. Lancet Public Health. 2020;5(1):e42–50. https://doi.org/10.1016/s2468-2667(19)30226-9.

    Article  PubMed  Google Scholar 

  49. Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing. 2018;47(2):193–200. https://doi.org/10.1093/ageing/afx162.

    Article  PubMed  Google Scholar 

  50. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging. 2016;8(1):3–11. https://doi.org/10.18632/aging.100871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sánchez-Flores M, Marcos-Pérez D, Costa S, Teixeira JP, Bonassi S, Pásaro E, et al. Oxidative stress, genomic features and DNA repair in frail elderly: a systematic review. Ageing Res Rev. 2017;37:1–15. https://doi.org/10.1016/j.arr.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  52. Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol. 2019;176(3):337–54. https://doi.org/10.1111/bph.14530.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China-European Commission Horizon 2020 (2017YFE0118800-779238) and Beijing Talents Project (2020A17).

Author information

Authors and Affiliations

Authors

Contributions

LW and YW contributed to the study conception and design. Analysis and interpretation of data was performed by XJ, WS, JZ, and HL. Drafting of the manuscript was performed by XJ, WS, QZ, and XM. YW did critical revision of the manuscript for important intellectual content. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lijuan Wu or Youxin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethical approval of the UK Biobank was obtained from the National Health Service National Research Ethics Service, and all participants provided written informed consent.

Consent to participate

Written informed consent was obtained from all participants.

Consent for publication

All authors gave their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, X., Sun, W., Zhang, J. et al. Frailty mediating the causality between leucocyte telomere length and mortality: a cohort study of 440,551 UK Biobank participants. EPMA Journal 15, 99–110 (2024). https://doi.org/10.1007/s13167-024-00355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-024-00355-7

Keywords

Navigation