Optical coherence tomographic patterns in patients with retinal vein occlusion and macular edema treated by ranibizumab: a predictive and personalized approach

Abstract

Purpose

To establish the morphological and functional parameters to predict the effectiveness of intravitreal injections (IVI) of ranibizumab in macular edema due to retinal vein occlusion and to develop a mathematical model for personalized treatment algorithms.

Material and methods

This is a retrospective study of 98 patients (98 eyes) with macular edema, who received IVI of ranibizumab and were followed up for 12 months. Spectral optical coherence tomography scans and best corrected visual acuity (BCVA) assessments were conducted every 3 months. Treatment outcome predictors were calculated based on logistic regression analysis.

Results

The most significant prognostic factors for the long-term BCVA were baseline BCVA (OR 11.1, p = 0.001), foveal volume (OR 10.8, p = 0.001), destruction of external limiting membrane (OR 15.8, p = 0.001), photoreceptor inner/outer segments (OR 11.1, p = 0.001) and retinal pigment epithelium (OR 9.1, p = 0.001). It has also been discovered that post-treatment BCVA correlated with the height of serous retinal detachment (SRD) (r = −0.4, p = 0.001), ganglion cell complex thickness (r =  + 0.3, p = 0.01) and focal loss of ganglion cells (r =−0.3, p = 0.005). Patients without SRD required fewer ranibizumab injections (3.8 ± 1.1) for macular edema fluid resorption compared to those with SRD (5.7 ± 1.2, p = 0.03). A mathematical model for predicting and personalized approach therapy of ranibizumab has been obtained (accuracy of 89%).

Conclusion

The effectiveness of IVI of ranibizumab depends on baseline morphological and functional changes. The obtained mathematical model allows for predicting the outcomes of therapy, determining individualized algorithms to increase the treatment effectiveness and to prevent low vision that corresponds to the principles of predictive, preventive, and personalized medicine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data available on request due to privacy and ethical restrictions.

Code availability

Not applicable.

References

  1. 1.

    Berger AR, et al. Optimal treatment of retinal vein occlusion: Canadian Expert Consensus. Ophthalmologica. 2015;234(1):6–25. https://doi.org/10.1159/000381357.

    Article  PubMed  Google Scholar 

  2. 2.

    Coscas G, Loewenstein A, Augustin A, Bandello F, Battaglia Parodi M, Lanzetta P, Monés J, de Smet M, Soubrane G, Staurenghi G. Management of retinal vein occlusion-consensus document. Ophthalmologica. 2011;226(1):4–28. https://doi.org/10.1159/000327391.

    Article  PubMed  Google Scholar 

  3. 3.

    McIntosh RL, Rogers SL, Lim L, Cheung N, Wang JJ, Mitchell P, Kowalski JW, Nguyen HP, Wong TY. Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117(6):1113-1123.e15. https://doi.org/10.1016/j.ophtha.2010.01.060.

    Article  PubMed  Google Scholar 

  4. 4.

    Ponto KA, Scharrer I, Binder H, Korb C, Rosner AK, Ehlers TO, Rieser N, Grübel NC, Rossmann H, Wild PS, Feltgen N, Pfeiffer N, Mirshahi A. Hypertension and multiple cardiovascular risk factors increase the risk for retinal vein occlusions: results from the Gutenberg Retinal Vein Occlusion Study. J Hypertens. 2019;37(7):1372–83. https://doi.org/10.1097/HJH.0000000000002057.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res. 2008;33(2):111–31. https://doi.org/10.1080/02713680701851902.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Flammer J, Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J. 2015;6:21. https://doi.org/10.1186/s13167-015-0043-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, Rothschild PR, Omri S, Gélizé E, Jonet L, Delaunay K, De Kozak Y, Berdugo M, Zhao M, Crisanti P, Behar-Cohen F. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68. https://doi.org/10.1016/j.preteyeres.2017.10.006.

    Article  PubMed  Google Scholar 

  8. 8.

    Hayreh SS. Retinal vein occlusion. Indian J Ophthalmol. 1994;42(3):109–32.

    CAS  PubMed  Google Scholar 

  9. 9.

    Hayreh SS, Podhajsky PA, Zimmerman MB. Natural history of visual outcome in central retinal vein occlusion. Ophthalmology. 2011;118(1):119-133.e1-2. https://doi.org/10.1016/j.ophtha.2010.04.019.

    Article  PubMed  Google Scholar 

  10. 10.

    Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome. JAMA Ophthalmol. 2014;132(1):13–22. https://doi.org/10.1001/jamaophthalmol.2013.5515.

    Article  PubMed  Google Scholar 

  11. 11.

    Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campochiaro PA, Vinores SA. Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1beta-mediated breakdown. J Neurosci Res. 1997;49(3):268–80. https://doi.org/10.1002/(sici)1097-4547(19970801)49:3%3c268:aid-jnr2%3e3.0.co;2-a.

  12. 12.

    Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K, Uji A, Yoshimura N. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology. 2013;120(1):91–9. https://doi.org/10.1016/j.ophtha.2012.06.054.

    Article  PubMed  Google Scholar 

  13. 13.

    Campochiaro PA, Bhisitkul RB, Shapiro H, Rubio RG. Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion. Ophthalmology. 2013;120(4):795–802. https://doi.org/10.1016/j.ophtha.2012.09.032.

    Article  PubMed  Google Scholar 

  14. 14.

    Pérez-Ruiz M, Ros J, Morales-Ruiz M, Navasa M, Colmenero J, Ruiz-del-Arbol L, Cejudo P, Clária J, Rivera F, Arroyo V, Rodés J, Jiménez W. Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide. Hepatology. 1999;29(4):1057–63. https://doi.org/10.1002/hep.510290416.

    Article  PubMed  Google Scholar 

  15. 15.

    Kamei M, Terasaki H, Yoshimura N, Shiraga F, Ogura Y, Grotzfeld AS, Pilz S, Ishibashi T. Short-term efficacy and safety of ranibizumab for macular oedema secondary to retinal vein occlusion in Japanese patients. Acta Ophthalmol. 2017;95(1):e29–35. https://doi.org/10.1111/aos.13196.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, Rundle AC, Rubio RG, Murahashi WY, CRUISE Investigators. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124-1133.e1. https://doi.org/10.1016/j.ophtha.2010.02.022.

    Article  PubMed  Google Scholar 

  17. 17.

    Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, BRAVO Investigators. Ranibizumab for macular edema following branch retinal vein occlusion: six month primary end point results of phase III study. Ophthalmology. 2010;117(6):1102-1112.e1. https://doi.org/10.1016/j.ophtha.2010.02.021.

    Article  PubMed  Google Scholar 

  18. 18.

    Larsen M, Waldstein SM, Boscia F, Gerding H, Monés J, Tadayoni R, Priglinger S, Wenzel A, Barnes E, Pilz S, Stubbings W, Pearce I, CRYSTAL Study Group. Individualized ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion: twelve-month results. Ophthalmology. 2016;123(5):1101–11. https://doi.org/10.1016/j.ophtha.2016.01.011.

    Article  PubMed  Google Scholar 

  19. 19.

    Chatziralli I, Theodossiadis G, Chatzirallis A, Parikakis E, Mitropoulos P, Theodossiadis P. Ranibizumab for retinal vein occlusion: predictive factors and long-term outcomes in real-life data. Retina. 2018;38(3):559–68. https://doi.org/10.1097/IAE.0000000000001579.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Hirose M, Matsumiya W, Honda S, Nakamura M. Efficacy and visual prognostic factors of intravitreal bevacizumab as needed for macular edema secondary to central retinal vein occlusion. Clin Ophthalmol. 2014;8:2301–5. https://doi.org/10.2147/OPTH.S74888.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Jaissle GB, Szurman P, Feltgen N, et al. Predictive factors for functional improvement after intravitreal bevacizumab therapy for macular edema due to branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2011;249:183–92. https://doi.org/10.1007/s00417-010-1470-2.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Chung EJ, Hong YT, Lee SC, et al. Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2008;246:1241–7. https://doi.org/10.1007/s00417-008-0866-8.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Minami Y, Nagaoka T, Ishibazawa Akihiro, Yoshida Akitoshi. Correlation between short- and long-term effects of intravitreal ranibizumab therapy on macular edema after branch retinal vein occlusion: a prospective observational study. BMC Ophthalmol. 2017;17(1):90. https://doi.org/10.1186/s12886-017-0485-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Celık E, Doğan E, Turkoglu EB, Çakır B, Alagoz G. Serous retinal detachment in patients with macular edema secondary to branch retinal vein occlusion. Arq Bras Oftalmol. 2016;79(1):9–11. https://doi.org/10.5935/0004-2749.20160004.

    Article  PubMed  Google Scholar 

  25. 25.

    Dogan E, Sever O, Köklü Çakır B, Celik E. Effect of intravitreal ranibizumab on serous retinal detachment in branch retinal vein occlusion. Clin Ophthalmol. 2018;17(12):1465–70. https://doi.org/10.2147/OPTH.S162019.

    Article  Google Scholar 

  26. 26.

    Fujihara-Mino A, Mitamura Y, Inomoto N, Sano H, Akaiwa K, Semba K. Optical coherence tomography parameters predictive of visual outcome after anti-VEGF therapy for retinal vein occlusion. Clin Ophthalmol. 2016;10:1305–13. https://doi.org/10.2147/OPTH.S110793.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Imai A, Toriyama Y, Iesato Y, Hirano T, Murata T. En-face swept-source optical coherence tomography detecting thinning of inner retinal layers as an indicator of capillary nonperfusion. Eur J Ophthalmol. 2015;25(2):153–8. https://doi.org/10.5301/ejo.5000514.

    Article  PubMed  Google Scholar 

  28. 28.

    Groneberg T, Trattnig JS, Feucht N, Lohmann CP, Maier M. Morphologic patterns on spectral-domain optical coherence tomography (SD-OCT) as a prognostic indicator in treatment of macular edema due to retinal vein occlusion. Klin Monbl Augenheilkd. 2016;233(9):1056–62. https://doi.org/10.1055/s-0041-108680.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Abri Aghdam K, Reznicek L, Soltan Sanjari M, Klingenstein A, Kernt M, Seidensticker F. Anti-VEGF treatment and peripheral retinal nonperfusion in patients with central retinal vein occlusion. Clin Ophthalmol. 2017;11:331–6. https://doi.org/10.2147/OPTH.S125486.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Choi KE, Yun C, Cha J, Kim SW. OCT angiography features associated with macular edema recurrence after intravitreal bevacizumab treatment in branch retinal vein occlusion. Sci Rep. 2019;9(1):14153. https://doi.org/10.1038/s41598-019-50637-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Jang JH, Kim YC, Shin JP. Correlation between macular edema recurrence and macular capillary network destruction in branch retinal vein occlusion. BMC Ophthalmol. 2020;20(1):341. https://doi.org/10.1186/s12886-020-01611-w.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Forooghian F, Kertes PJ, Eng KT, Albiani DA, Kirker AW, Merkur AB, Fallah N, Cao S, Cui J, Or C, Matsubara JA. Alterations in intraocular cytokine levels following intravitreal ranibizumab. Can J Ophthalmol. 2016;51(2):87–90. https://doi.org/10.1016/j.jcjo.2015.11.001.

    Article  PubMed  Google Scholar 

  33. 33.

    Noma H, Yasuda K, Shimura M. Cytokines and recurrence of macular edema after intravitreal ranibizumab in patients with branch retinal vein occlusion. Eur J Ophthalmol. 2019:1120672119885054. https://doi.org/10.1177/1120672119885054.

  34. 34.

    Polivka J Jr, Polivka J, Pesta M, Rohan V, Celedova L, Mahajani S, Topolcan O, Golubnitschaja O. Risks associated with the stroke predisposition at young age: facts and hypotheses in light of individualized predictive and preventive approach. EPMA J. 2019;10(1):81–99. https://doi.org/10.1007/s13167-019-00162-5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. I. Kurysheva.

Ethics declarations

Ethics approval

The study was approved by the ethics committee of Federal State Budgetary Educational Institution of Higher Education "South Ural State Medical University" of the Ministry of Health of the Russian Federation.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khokhlova, D.Y., Drozdova, E.A., Kurysheva, N.I. et al. Optical coherence tomographic patterns in patients with retinal vein occlusion and macular edema treated by ranibizumab: a predictive and personalized approach. EPMA Journal 12, 57–66 (2021). https://doi.org/10.1007/s13167-021-00233-6

Download citation

Keywords

  • Macular edema
  • Retinal vein occlusion
  • Hypoxia
  • Blood-retinal barrier permeability
  • Endothelial dysfunction
  • Endothelin-1
  • Pro-inflammatory
  • Vasoconstriction
  • Risk factors
  • Ranibizumab
  • Optical coherence tomography
  • Predictive preventive personalized medicine
  • Mathematical model
  • Individualized treatment algorithms
  • Individual outcomes