Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine

Abstract

Objective

Energy metabolism abnormality is the hallmark in epithelial ovarian carcinoma (EOC). This study aimed to investigate energy metabolism pathway alterations and their regulation by the antiparasite drug ivermectin in EOC for the discovery of energy metabolism pathway-based molecular biomarker pattern and therapeutic targets in the context of predictive, preventive, and personalized medicine (PPPM) in EOC.

Methods

iTRAQ-based quantitative proteomics was used to identify mitochondrial differentially expressed proteins (mtDEPs) between human EOC and control mitochondrial samples isolated from 8 EOC and 11 control ovary tissues from gynecologic surgery of Chinese patients, respectively. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to analyze the protein expressions of energy metabolic pathways in EOC cells treated with and without ivermectin. Cell proliferation, cell cycle, apoptosis, and important molecules in energy metabolism pathway were examined before and after ivermectin treatment of different EOC cells.

Results

In total, 1198 mtDEPs were identified, and various mtDEPs were related to energy metabolism changes in EOC, with an interesting result that EOC tissues had enhanced abilities in oxidative phosphorylation (OXPHOS), Kreb’s cycle, and aerobic glycolysis, for ATP generation, with experiment-confirmed upregulations of UQCRH in OXPHOS; IDH2, CS, and OGDHL in Kreb’s cycle; and PKM2 in glycolysis pathways. Importantly, PDHB that links glycolysis with Kreb’s cycle was upregulated in EOC. SILAC-based quantitative proteomics found that the protein expression levels of energy metabolic pathways were regulated by ivermectin in EOC cells. Furthermore, ivermectin demonstrated its strong abilities to inhibit proliferation and cell cycle and promote apoptosis in EOC cells, through molecular networks to target PFKP in glycolysis; IDH2 and IDH3B in Kreb’s cycle; ND2, ND5, CYTB, and UQCRH in OXPHOS; and MCT1 and MCT4 in lactate shuttle to inhibit EOC growth.

Conclusions

Our findings revealed that the Warburg and reverse Warburg effects coexisted in human ovarian cancer tissues, provided the first multiomics-based molecular alteration spectrum of ovarian cancer energy metabolism pathways (aerobic glycolysis, Kreb’s cycle, oxidative phosphorylation, and lactate shuttle), and demonstrated that the antiparasite drug ivermectin effectively regulated these changed molecules in energy metabolism pathways and had strong capability to inhibit cell proliferation and cell cycle progression and promote cell apoptosis in ovarian cancer cells. The observed molecular changes in energy metabolism pathways bring benefits for an in-depth understanding of the molecular mechanisms of energy metabolism heterogeneity and the discovery of effective biomarkers for individualized patient stratification and predictive/prognostic assessment and therapeutic targets/drugs for personalized therapy of ovarian cancer patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

1DGE:

one-dimensional gel electrophoresis

3P medicine:

predictive, preventive, and personalized medicine (PPPM)

ABCB1:

ATP binding cassette subfamily B member 1

Abcb1b:

ATP-binding cassette, subfamily B (MDR/TAP), member 1B

ABCG2:

ATP-binding cassette subfamily G member 2

ACO1:

cytoplasmic aconitate hydratase

ADH5:

alcohol dehydrogenase 5 class III chi polypeptide

Akt:

AKT serine/threonine kinase 1

APC:

APC regulator of WNT signaling pathway

APP:

amyloid beta precursor protein

ATP:

adenosine triphosphate

ATP5G1:

ATP synthase membrane subunit c locus 1

ATP6:

ATP synthase F0 subunit 6

ATP6V0C:

ATPase H+ transporting V0 subunit c

ATP6V1D:

ATPase H+ transporting V1 subunit D

AZD2281:

olaparib

BRCA1:

BRCA1 DNA repair associated

BRCA2:

BRCA2 DNA repair associated

CA-125:

cancer antigen 125

CAFs:

cancer-associated fibroblasts

CCK8:

Cell Counting Kit-8

CML:

chronic myeloid leukemia

CoA:

acetyl-coenzyme A

COX1:

cytochrome c oxidase subunit

COX17:

cytochrome c oxidase copper chaperone COX17

COX2:

cytochrome c oxidase subunit II

COX4I1:

cytochrome c oxidase subunit 4I1

COX4I2:

cytochrome c oxidase subunit 4I2

COX6C:

cytochrome c oxidase subunit 6C

COX7A2:

cytochrome c oxidase subunit 7A2

COX7A2L:

cytochrome c oxidase subunit 7A2-like

CS:

citrate synthase

CYP3A4:

cytochrome P450 family 3 subfamily A member 4

CYTB:

mitochondrially encoded cytochrome b

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

EdU:

5-ethynyl-2′-deoxyuridine

EIF4A3:

eukaryotic translation initiation factor 4A3

ENO1:

enolase 1

EOC:

epithelial ovarian carcinoma

ERK1/2:

mitogen-activated protein kinase 3

ETC:

electron transport chain

FACS:

fluorescence-activated cell sorting

FADH2:

2,4-dienoyl-CoA reductase

FDA:

Food and Drug Administration

FH:

fumarate hydratase

G0/G:

G0/G cell cycle phase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GLRB:

glycine receptor beta

GM130:

golgin A2

GO:

Gene Ontology

GPI:

glucose-6-phosphate isomerase

IC50:

the half maximal inhibitory concentration

IDH2:

isocitrate dehydrogenase (NADP(+)) 2

IDH3A:

isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial

IDH3B:

isocitrate dehydrogenase (NAD(+)) 3 noncatalytic subunit beta

IPA:

Ingenuity Pathway Analysis

iTRAQ:

isobaric tags for relative and absolute quantitation

K:

lysine

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KPNB1:

karyopherin subunit beta 1

Kreb’s cycle:

tricarboxylic acid cycle

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

LDHA:

lactate dehydrogenase A

LDHB:

lactate dehydrogenase B

lncRNA:

long noncoding RNAs

MAPK1:

mitogen-activated protein kinase 1

MAPK13:

mitogen-activated protein kinase 13

MAPK3:

mitogen-activated protein kinase 3

MCT1:

solute carrier family 16 member 1

MCT4:

solute carrier family 16 member 4

MCTs:

monocarboxylate transporters

MDH2:

malate dehydrogenase 2

miRNA:

microRNA

M r :

protein molecular weight

mRNA:

messenger RNA

MRP1:

multidrug resistance-associated protein 1

MRPL41:

mitochondrial ribosomal protein L41

MRPL46:

mitochondrial ribosomal protein L41

MRPL49:

mitochondrial ribosomal protein L49

MRPL51:

mitochondrial ribosomal protein L51

MRPL52:

mitochondrial ribosomal protein L52

MRPL53:

mitochondrial ribosomal protein L53

MRPL54:

mitochondrial ribosomal protein L54

MRPL55:

mitochondrial ribosomal protein L55

MRPS10:

mitochondrial ribosomal protein S10

MRPS12:

mitochondrial ribosomal protein S12

MRPS15:

mitochondrial ribosomal protein S15

MRPS17:

mitochondrial ribosomal protein S17

MRPS21:

mitochondrial ribosomal protein S21

MRPS23:

mitochondrial ribosomal protein S23

MRPS33:

mitochondrial ribosomal protein S33

MRPS6:

mitochondrial ribosomal protein S6

MRPS9:

mitochondrial ribosomal protein S9

mtDEPs:

mitochondrial differentially expressed proteins

mTOR:

mechanistic target of rapamycin kinase

NADH:

mitochondrially encoded NADH dehydrogenase 1

ND2:

mitochondrially encoded NADH dehydrogenase 2

ND5:

mitochondrially encoded NADH dehydrogenase 5

NFKBIA:

NFKB inhibitor alpha

OGDHL:

oxoglutarate dehydrogenase L

OXPHOS:

oxidative phosphorylation

p21:

cyclin-dependent kinase inhibitor 1A

p27:

cyclin-dependent kinase inhibitor 1B

P2RX4:

purinergic receptor P2X 4

P2RX7:

purinergic receptor P2X 7

PAK1:

p21 (RAC1)-activated kinase 1

PARP:

polyADP-ribose polymerase inhibitor

PCK2:

phosphoenolpyruvate carboxykinase [GTP], mitochondrial

PDC:

pyruvate dehydrogenase complex

PDHB:

pyruvate dehydrogenase E1 subunit beta

PFKP:

phosphofructokinase, platelet

pI :

isoelectric point

PKM:

pyruvate kinase muscle

PKM2:

pyruvate kinase M2

PPPM:

predictive, preventive, and personalized medicine

PTMs:

posttranslational modifications

QCR6:

mitochondrial cytochrome b-c1 complex subunit 6

qRT-PCR:

quantitative real-time PCR

R:

arginine

Rbp:

SURP and G-patch domain containing 1

RNA:

ribonucleic acid

ROS:

reactive oxygen species

SCX:

strong cation exchange chromatography

SD:

standard deviation

SDT:

N-hydroxysuccinimide

SILAC:

stable isotope labeling with amino acids in cell culture

SNHG3:

small nucleolar RNA host gene 3

STAT3:

signal transducer and activator of transcription 3

SUCLG2:

succinate–CoA ligase GDP-forming subunit beta

TNF:

tumor necrosis factor

TOMM20:

translocase of outer mitochondrial membrane 20

UQCRH:

ubiquinol-cytochrome c reductase hinge protein

VDAC1:

voltage-dependent anion channel 1

References

  1. 1.

    Chan JK, Cheung MK, Husain A, Teng NN, West D, Whittemore AS, et al. Patterns and progress in ovarian cancer over 14 years. Obstet Gynecol. 2006;108:521–8. https://doi.org/10.1097/01.AOG.0000231680.58221.a7.

    Article  PubMed  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332.

    Article  Google Scholar 

  3. 3.

    Gadducci A, Cosio S, Zola P, Landoni F, Maggino T, Sartori E. Surveillance procedures for patients treated for epithelial ovarian cancer: a review of the literature. Int J Gynecol Cancer. 2007;17:21–31. https://doi.org/10.1111/j.1525-1438.2007.00826.x.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Smith RA, Manassaram-Baptiste D, Brooks D, Doroshenk M, Fedewa S, Saslow D, et al. Cancer screening in the United States, 2015: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2015;65:30–54. https://doi.org/10.3322/caac.21261.

    Article  PubMed  Google Scholar 

  5. 5.

    Buchtel KM, Vogel Postula KJ, Weiss S, Williams C, Pineda M, Weissman SM. FDA approval of PARP inhibitors and the impact on genetic counseling and genetic testing practices. J Genet Couns. 2018;27(1):131–9. https://doi.org/10.1007/s10897-017-0130-7.

    Article  PubMed  Google Scholar 

  6. 6.

    Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8. https://doi.org/10.1126/science.aam7344.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Jacob F, Meier M, Caduff R, Goldstein D, Pochechueva T, Hacker N, et al. No benefit from combining HE4 and CA125 as ovarian tumor markers in a clinical setting. Gynecol Oncol. 2011;121:487–91. https://doi.org/10.1016/j.ygyno.2011.02.022.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Vanni S. Omics of prion diseases. Prog Mol Biol Transl Sci. 2017;150:409–31. https://doi.org/10.1016/bs.pmbts.2017.05.004.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhan X, Wang X, Long Y, Desiderio DM. Heterogeneity analysis of the proteomes in clinically nonfunctional pituitary adenomas. BMC Med Genet. 2014;7:69. https://doi.org/10.1186/s12920-014-0069-6.

    Article  Google Scholar 

  10. 10.

    Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A, et al. Expanding the interactome of TES by exploiting TES modules with different subcellular localizations. J Proteome Res. 2017;16:2054–71. https://doi.org/10.1021/acs.jproteome.7b00034.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sassano ML, van Vliet AR, Agostinis P. Mitochondria-associated membranes as networking platforms and regulators of cancer cell fate. Front Oncol. 2017;7:174. https://doi.org/10.3389/fonc.2017.00174.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Strickertsson JAB, Desler C, Rasmussen LJ. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol. 2017;47:95–100. https://doi.org/10.1016/j.semcancer.2017.07.003.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wang Y, Zhang J, Li B, He QY. Proteomic analysis of mitochondria: biological and clinical progresses in cancer. Expert Rev Proteomics. 2017;14:891–903. https://doi.org/10.1080/14789450.2017.1374180.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Mintz HA, Yawn DH, Safer B, Bresnick E, Liebelt AG, Blailock ZR, et al. Morphological and biochemical studies of isolated mitochondria from fetal, neonatal, and adult liver and from neoplastic tissues. J Cell Biol. 1967;34:513–23.

    CAS  Article  Google Scholar 

  15. 15.

    Chen M, Huang H, He H, Ying W, Liu X, Dai Z, et al. Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines. Cancer Sci. 2015;106:1075–83. https://doi.org/10.1111/cas.12710.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li N, Li H, Cao L, Zhan X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocr Relat Cancer. 2018;25:909–31. https://doi.org/10.1530/erc-18-0243.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Li N, Zhan X, Zhan X. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol Oncol. 2018;150:343–54. https://doi.org/10.1016/j.ygyno.2018.06.013.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66. https://doi.org/10.1016/j.cell.2016.07.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Li N, Zhan X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J. 2019;10:153–72. https://doi.org/10.1007/s13167-019-00170-5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kim A. Mitochondria in cancer energy metabolism: culprits or bystanders? Toxicol Res. 2015;31:323–30. https://doi.org/10.5487/tr.2015.31.4.323.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    CAS  Article  Google Scholar 

  22. 22.

    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3. https://doi.org/10.1038/nature06734.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162:540–51. https://doi.org/10.1016/j.cell.2015.07.016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001. https://doi.org/10.4161/cc.8.23.10238.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bar-Or D, Carrick M, Tanner A 2nd, Lieser MJ, Rael LT, Brody E. Overcoming the Warburg effect: is it the key to survival in sepsis? J Crit Care. 2018;43:197–201. https://doi.org/10.1016/j.jcrc.2017.09.012.

    Article  PubMed  Google Scholar 

  26. 26.

    Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 2011;10:1772–83. https://doi.org/10.4161/cc.10.11.15659.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, et al. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat. 2015;38:117–22. https://doi.org/10.1159/000375435.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Chao TK, Huang TS, Liao YP, Huang RL, Su PH, Shen HY, et al. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One. 2017;12:e0182166. https://doi.org/10.1371/journal.pone.0182166.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol. 2014;92:43–54. https://doi.org/10.1016/j.bcp.2014.08.011.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chosidow O, Bernigaud C, Do-Pham G. High-dose ivermectin in malaria and other parasitic diseases: a new step in the development of a neglected drug. Parasite. 2018;25:33. https://doi.org/10.1051/parasite/2018039.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Omura S. A splendid gift from the earth: the origins and impact of the Avermectins (Nobel lecture). Angew Chem Int Ed Eng. 2016;55:10190–209. https://doi.org/10.1002/anie.201602164.

    CAS  Article  Google Scholar 

  32. 32.

    Crump A. Ivermectin: enigmatic multifaceted 'wonder' drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 2017;70:495–505. https://doi.org/10.1038/ja.2017.11.

    CAS  Article  Google Scholar 

  33. 33.

    Drinyaev VA, Mosin VA, Kruglyak EB, Novik TS, Sterlina TS, Ermakova NV, et al. Antitumor effect of avermectins. Eur J Pharmacol. 2004;501:19–23. https://doi.org/10.1016/j.ejphar.2004.08.009.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Dou Q, Chen HN, Wang K, Yuan K, Lei Y, Li K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res. 2016;76:4457–69. https://doi.org/10.1158/0008-5472.can-15-2887.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zhu M, Li Y, Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem Biophys Res Commun. 2017;492:373–8. https://doi.org/10.1016/j.bbrc.2017.08.097.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wang J, Xu Y, Wan H, Hu J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2018;497:241–7. https://doi.org/10.1016/j.bbrc.2018.02.063.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kodama M, Kodama T. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2017;114:E7301–e7310. https://doi.org/10.1073/pnas.1705441114.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang LN, Tong SW, Hu HD, Ye F, Li SL, Ren H, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem. 2012;113:3762–72. https://doi.org/10.1002/jcb.24250.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lokich E, Singh RK, Han A, Romano N, Yano N, Kim K, et al. HE4 expression is associated with hormonal elements and mediated by importin-dependent nuclear translocation. Sci Rep. 2014;4:5500. https://doi.org/10.1038/srep05500.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hashimoto H, Messerli SM, Sudo T, Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther. 2009;3:243–6.

    CAS  PubMed  Google Scholar 

  41. 41.

    Bartolak-Suki E, Imsirovic J, Nishibori Y, Krishnan R, Suki B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18081812.

  42. 42.

    Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis. 2015;38(4):681–702. https://doi.org/10.1007/s10545-015-9819-7.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Rezaul K, Wu L, Mayya V, Hwang SI, Han D. A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics. 2005;4:169–81. https://doi.org/10.1074/mcp.M400115-MCP200.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bragoszewski P, Wasilewski M, Sakowska P, Gornicka A, Bottinger L, Qiu J, et al. Retro-translocation of mitochondrial intermembrane space proteins. Proc Natl Acad Sci U S A. 2015;112:7713–8. https://doi.org/10.1073/pnas.1504615112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Johnston IG, Williams BP. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst. 2016;2:101–11. https://doi.org/10.1016/j.cels.2016.01.013.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22:1637–53. https://doi.org/10.1016/j.drudis.2017.08.003.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Watanabe H, Takehana K, Date M, Shinozaki T, Raz A. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 1996;56:2960–3.

    CAS  PubMed  Google Scholar 

  48. 48.

    Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2012;16:1264–84. https://doi.org/10.1089/ars.2011.4243.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:17. https://doi.org/10.1186/2049-3002-2-17.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sakhuja S, Yun H, Pisu M, Akinyemiju T. Availability of healthcare resources and epithelial ovarian cancer stage of diagnosis and mortality among Blacks and Whites. J Ovarian Res. 2017;10:57. https://doi.org/10.1186/s13048-017-0352-1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Min HY, Lee HY. Oncogene-driven metabolic alterations in cancer. Biomol Ther (Seoul). 2018;26:45–56. https://doi.org/10.4062/biomolther.2017.211.

    CAS  Article  Google Scholar 

  52. 52.

    Zhan X, Long Y, Lu M. Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: innovative approach and examples for potential clinical application. J Proteome. 2018;188:30–40. https://doi.org/10.1016/j.jprot.2017.08.020.

    CAS  Article  Google Scholar 

  53. 53.

    Qian S, Yang Y, Li N, Cheng T, Wang X, Liu J, et al. Prolactin variants in human pituitaries and pituitary adenomas identified with two-dimensional gel electrophoresis and mass spectrometry. Front Endocrinol (Lausanne). 2018;9:468. https://doi.org/10.3389/fendo.2018.00468.

    Article  Google Scholar 

  54. 54.

    Kobierzycki C, Piotrowska A, Latkowski K, Zabel M, Nowak-Markwitz E, Spaczynski M, et al. Correlation of pyruvate kinase M2 expression with clinicopathological data in ovarian cancer. Anticancer Res. 2018;38:295–300. https://doi.org/10.21873/anticanres.12221.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    DeHart DN, Lemasters JJ, Maldonado EN. Erastin-like anti-Warburg agents prevent mitochondrial depolarization induced by free tubulin and decrease lactate formation in cancer cells. SLAS Discov. 2018;23:23–33. https://doi.org/10.1177/2472555217731556.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:111. https://doi.org/10.1186/s13046-015-0221-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Godinot C, de Laplanche E, Hervouet E, Simonnet H. Actuality of Warburg's views in our understanding of renal cancer metabolism. J Bioenerg Biomembr. 2007;39:235–41. https://doi.org/10.1007/s10863-007-9088-8.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem. 2015;6:148–61. https://doi.org/10.4331/wjbc.v6.i3.148.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hernandez-Resendiz I, Roman-Rosales A, Garcia-Villa E, Lopez-Macay A, Pineda E, Saavedra E, et al. Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells. Biochim Biophys Acta. 1853;2015:3266–78. https://doi.org/10.1016/j.bbamcr.2015.09.033.

    CAS  Article  Google Scholar 

  60. 60.

    Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, et al. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk Lymphoma. 2010;51:2112–9. https://doi.org/10.3109/10428194.2010.512966.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Klepinin A, Ounpuu L, Guzun R, Chekulayev V, Timohhina N, Tepp K, et al. Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr. 2016;48:531–48.

    CAS  Article  Google Scholar 

  62. 62.

    Jin L, Feng X, Rong H, Pan Z, Inaba Y, Qiu L, et al. The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun. 2013;4:1937. https://doi.org/10.1038/ncomms2924.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Li N, Zhan X. Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes. EPMA J. 2020;11:289–309. https://doi.org/10.1007/s13167-020-00209-y.

    Article  PubMed  Google Scholar 

  64. 64.

    Zhan X, Giorgianni F, Desiderio DM. Proteomics analysis of growth hormone isoforms in the human pituitary. Proteomics. 2005;5:1228–41. https://doi.org/10.1002/pmic.200400987.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Zhan X, Li B, Zhan X, Schlüter H, Jungblut PR, Coorssen JR. Innovating the concept and practice of two-dimensional gel electrophoresis in the analysis of proteomes at the proteoform level. Proteomes. 2019;7(4):36. https://doi.org/10.3390/proteomes7040036.

    CAS  Article  PubMed Central  Google Scholar 

  66. 66.

    Zhan X, Li N, Zhan X, Qian S. Revival of 2DE-LC/MS in proteomics and its potential for large-scale study of human proteoforms. Med One. 2018;3:e180008. https://doi.org/10.20900/mo.20180008.

    Article  Google Scholar 

  67. 67.

    Lu M. Wei Chen, Zhuang W, Zhan X. Label-free quantitative identification of abnormally ubiquitinated proteins as useful biomarkers for human lung squamous cell carcinomas. EPMA J. 2020;11(1):73–94. https://doi.org/10.1007/s13167-019-00197-8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Janssens JP, Schuster K, Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9(2):113–23. https://doi.org/10.1007/s13167-018-0130-1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020;11(3):377–98. https://doi.org/10.1007/s13167-020-00217-y.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Golubnitschaja O, Flammer J. Individualised patient profile: clinical utility of Flammer syndrome phenotype and general lessons for predictive, preventive and personalised medicine. EPMA J. 2018;9(1):15–20. https://doi.org/10.1007/s13167-018-0127-9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9(1):77–102. https://doi.org/10.1007/s13167-018-0128-8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Li N, Zhan X. Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 2019;10(3):273–90. https://doi.org/10.1007/s13167-019-00175-0.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Cheng T, Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8(1):51–60. https://doi.org/10.1007/s13167-017-0083-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Shandong First Medical University Talent Introduction Funds (to X.Z.) and the Hunan Provincial Hundred Talent Plan (to X.Z.).

Author information

Affiliations

Authors

Contributions

N.L. carried out the cell experiments, analyzed the data, prepared the figures and tables, and wrote the manuscript. H.L. collected the samples, prepared the mitochondrial samples, and participated in data analysis and table preparation. Y.W. participated in western blot experiments. L.C. collected tumor tissue samples and performed clinical diagnosis. X.Z. conceived the concept, designed the experiments and manuscript, instructed experiments and data analysis, coordinated and obtained the mitochondrial iTRAQ quantitative proteomic data, supervised the results, wrote and critically revised the manuscript, and was responsible for its financial support and the corresponding works. All authors approved the final manuscript.

Corresponding author

Correspondence to Xianquan Zhan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable

Ethical approval

All the patients were informed about the purposes of the study and, consequently, have signed their “consent of the patient.” All investigations conformed to the principles outlined in the Declaration of Helsinki and were performed with permission by the responsible Medical Ethics Committee of Xiangya Hospital, Central South University, China.

Additional information

Abbreviations for all particular genes and proteins can be found at the following link: https://www.ncbi.nlm.nih.gov/gene/.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 326 kb)

ESM 2

(PDF 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, N., Li, H., Wang, Y. et al. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA Journal (2020). https://doi.org/10.1007/s13167-020-00224-z

Download citation

Keywords

  • Epithelial ovarian carcinoma
  • Ivermectin
  • Mitochondrial proteomics
  • Warburg effect
  • Reverse Warburg effect
  • iTRAQ-based quantitative proteomics
  • SILAC-based quantitative proteomics
  • Energy metabolism pathway
  • Aerobic glycolysis
  • Kreb’s cycle
  • Oxidative phosphorylation
  • Lactate shuttle
  • Molecular biomarker pattern
  • Early diagnosis
  • Prognostic assessment
  • Predictive preventive personalized medicine (PPPM)