Advertisement

EPMA Journal

pp 1–14 | Cite as

Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining

  • Ahmed Ghamry AbdelhamidEmail author
  • Samar S. El-Masry
  • Noha K. El-Dougdoug
Research
  • 20 Downloads

Abstract

Background

Probiotics belonging to Lactobacillus and Bifidobacterium spp. have been exploited for their health benefits in treatment and prevention of many pathological conditions and promoting human health. Recent advances in understanding probiotics-human interaction through microbiome research in the context of various medical conditions suggest their provisional role in preventive, personalized, and predictive medicine. To streamline their application in disease prevention, development of personalized-based treatments, or their use as biomarkers for predictive diagnosis, in vitro screening for strains with potential probiotic properties should be performed. In this work, we aimed to emphasize the probiotic features of four Lactobacillus and two Bifidobacterium probiotic strains which showed antagonistic properties against microbial pathogens.

Methods

Firstly, cytotoxicity assessment of cell-free preparations from these strains was performed using a baby hamster kidney (BHK) cells and cell viability was measured by means of sulfo-rhodamine B stain. Secondly, Newcastle disease (ND) and infectious bursal disease (IBD) viruses which pose a great threat in infected poultry were used for assessing antiviral activity of probiotics. Thirdly, the genomes of six probiotic strains were used to identify genes encoding host adherence factors that mediate interaction with human tissues.

Results

Probiotic preparations exhibited insignificant toxicity as indicated by the high survival rate of BHK cells (surviving fraction varied from 0.82 to 0.99) as compared to the untreated control. Cell-free preparations of probiotics mixed with equal volume of ND and IBD viruses (106 and 104 Tissue Culture Infectious Dose 50, respectively) reduced the titer of ND and IBD viruses on chicken embryo fibroblast cells. Genome mining analysis revealed that the draft genomes of these strains were predicted to encode LPXTG-containing proteins, surface layer proteins, tight adherence pili, sortase-dependent pili, fibronectin, or collagen binding proteins and other factors that adhere to human tissues such as mucus. Such adherence factors enable probiotic bacteria to interact and colonize the host.

Conclusion

Taken together, safety privileges, antiviral activities, and genomically encoded host interaction factors confirmed probiotic features of the six probiotic strains and their potential in promoting human health.

Keywords

Probiotics Preventive Personalized and predictive medicine Cytotoxicity Antiviral activity Genome mining Host adherence proteins 

Notes

Acknowledgements

This work was supported partially by a grant from Benha University-Scientific Research Fund to A.G.A.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

This article does not have any studies with animals or patients performed by any of the authors

Supplementary material

13167_2019_184_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)
13167_2019_184_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 15 kb)

References

  1. 1.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.CrossRefGoogle Scholar
  2. 2.
    Ljungh A, Wadström T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006;7:73–89.Google Scholar
  3. 3.
    Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. Adv Food Nutr Res. 2012;67:185–239.CrossRefGoogle Scholar
  4. 4.
    Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Liver Physiol. 2010;298:G807.Google Scholar
  5. 5.
    Sharma M, Devi M. Probiotics: a comprehensive approach toward health foods. Crit Rev Food Sci Nutr. 2014;54:537–52.CrossRefGoogle Scholar
  6. 6.
    Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health. J Nutr. 2000;130:396S–402S.CrossRefGoogle Scholar
  7. 7.
    Guandalini S. Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol. 2011;45:S149–53.CrossRefGoogle Scholar
  8. 8.
    Hilton E, Kolakowski P, Singer C, Smith M. Efficacy of Lactobacillus GG as a diarrheal preventive in travelers. J Travel Med. 1997;4:41–3.CrossRefGoogle Scholar
  9. 9.
    Lee DK, Park JE, Kim MJ, Seo JG, Lee JH, Ha NJ. Probiotic bacteria, B.longum and L.acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol. 2015;39:237–44.CrossRefGoogle Scholar
  10. 10.
    Surawicz CM. Role of probiotics in antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, and recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 2008;42(Suppl 2):S64–70.CrossRefGoogle Scholar
  11. 11.
    Zhang G-Q, Hu H-J, Liu C-Y, Zhang Q, Shakya S, Li Z-Y. Probiotics for prevention of atopy and food hypersensitivity in early childhood. Medicine (Baltimore). 2016;95:e2562.CrossRefGoogle Scholar
  12. 12.
    Sung V, D’Amico F, Cabana MD, Chau K, Koren G, Savino F, et al. Lactobacillus reuteri to treat infant colic: a meta-analysis. Pediatrics. 2018;141:e20171811.CrossRefGoogle Scholar
  13. 13.
    Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, et al. How do probiotics and prebiotics function at distant sites? Benefic Microbes. 2017;8:521–33.CrossRefGoogle Scholar
  14. 14.
    Zhang J-W, Du P, Yang B-R, Gao J, Fang W-J, Ying C-M. Preoperative probiotics decrease postoperative infectious complications of colorectal Cancer. Am J Med Sci. 2012;343:199–205.CrossRefGoogle Scholar
  15. 15.
    Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85:488–96.CrossRefGoogle Scholar
  16. 16.
    Petricevic L, Unger FM, Viernstein H, Kiss H. Randomized, double-blind, placebo-controlled study of oral lactobacilli to improve the vaginal flora of postmenopausal women. Eur J Obstet Gynecol Reprod Biol. 2008;141:54–7.CrossRefGoogle Scholar
  17. 17.
    Mastromarino P, Macchia S, Meggiorini L, Trinchieri V, Mosca L, Perluigi M, et al. Effectiveness of Lactobacillus-containing vaginal tablets in the treatment of symptomatic bacterial vaginosis. Clin Microbiol Infect. 2009;15:67–74.CrossRefGoogle Scholar
  18. 18.
    Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab. 2009;54:22–7.CrossRefGoogle Scholar
  19. 19.
    Sheu BS, Wu JJ, Lo CY, Wu HW, Chen JH, Lin YS, et al. Impact of supplement with Lactobacillus- and Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. Aliment Pharmacol Ther. 2002;16:1669–75.CrossRefGoogle Scholar
  20. 20.
    Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 2001;60:1097–105.CrossRefGoogle Scholar
  21. 21.
    Venturi A, Gionchetti P, Rizzello F, Johansson R, Zucconi E, Brigidi P, et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther. 1999;13:1103–8.CrossRefGoogle Scholar
  22. 22.
    Del Piano M, Carmagnola S, Andorno S, Pagliarulo M, Tari R, Mogna L, et al. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. J Clin Gastroenterol. 2010;44:S42–6.CrossRefGoogle Scholar
  23. 23.
    Dinleyici EC, Dalgic N, Guven S, Ozen M, Kara A, Arica V, et al. The effect of a multispecies synbiotic mixture on the duration of diarrhea and length of hospital stay in children with acute diarrhea in Turkey: single blinded randomized study. Eur J Pediatr. 2013;172:459–64.CrossRefGoogle Scholar
  24. 24.
    Iannitti T, Palmieri B. Therapeutical use of probiotic formulations in clinical practice. Clin Nutr. 2010;29:701–25.CrossRefGoogle Scholar
  25. 25.
    Minocha A. Probiotics for preventive health. Nutr Clin Pract. 2009;24:227–41.CrossRefGoogle Scholar
  26. 26.
    Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112:S1–S18.CrossRefGoogle Scholar
  27. 27.
    Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6:39–51.CrossRefGoogle Scholar
  28. 28.
    Shapiro H, Suez J, Elinav E. Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes. 2017;9:226–36.CrossRefGoogle Scholar
  29. 29.
    Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV. Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J. 2015;6:14.CrossRefGoogle Scholar
  30. 30.
    Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, et al. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J. 2017;8:357–76.CrossRefGoogle Scholar
  31. 31.
    Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. EPMA J. 2018;9:205–23.CrossRefGoogle Scholar
  32. 32.
    Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol. 2016;69:187–203.CrossRefGoogle Scholar
  33. 33.
    Sanders ME, Akkermans LMA, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, et al. Safety assessment of probiotics for human use. Gut Microbes. 2010;1:164–85.CrossRefGoogle Scholar
  34. 34.
    Abdelhamid AG, Esaam A, Hazaa MM. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm J. 2018;26:603–7.CrossRefGoogle Scholar
  35. 35.
    Kim MJ, Lee DK, Park JE, Park IH, Seo JG, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM1605 against Coxsackievirus B3. Biotechnol Biotechnol Equip. 2014;28:681–8.CrossRefGoogle Scholar
  36. 36.
    Lehtoranta L, Pitkäranta A, Korpela R. Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis. 2014;33:1289–302.CrossRefGoogle Scholar
  37. 37.
    Lee DK, Kang JY, Shin HS, Park IH, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res. 2013;36:1525–32.CrossRefGoogle Scholar
  38. 38.
    Cha M-K, Lee D-K, An H-M, Lee S-W, Shin S-H, Kwon J-H, et al. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012;10:72.CrossRefGoogle Scholar
  39. 39.
    Kwak M-K, Liu R, Kwon J-O, Kim M-K, Kim AH, Kang S-O. Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus. J Microbiol. 2013;51:836–43.CrossRefGoogle Scholar
  40. 40.
    Patel AR, Shah NP, Prajapati JB. 2014. Immunomodulatory effects of probiotics in the treatment of human immunodeficiency virus (HIV) infection. Biomed Prev Nutr. 2014;4:81–4.CrossRefGoogle Scholar
  41. 41.
    An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, et al. Antiviral activity of bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Arch Pharm Res. 2012;35:1665–71.CrossRefGoogle Scholar
  42. 42.
    Garcia SC, Navarro Lopez R, Morales R, Olvera MA, Marquez MA, Merino R, et al. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Appl Environ Microbiol. 2013;79:4985–92.CrossRefGoogle Scholar
  43. 43.
    Berg TP, Gonze M, Meulemans G. Acute infectious bursal disease in poultry: isolation and characterisation of a highly virulent strain. Avian Pathol. 1991;20:133–43.CrossRefGoogle Scholar
  44. 44.
    Razmyar J, Peighambari SM. Isolation and characterization of a very virulent infectious bursal disease virus from Turkey. Acta Virol. 2009;53:271–6.CrossRefGoogle Scholar
  45. 45.
    Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS One. 2018;13:e0192452.CrossRefGoogle Scholar
  46. 46.
    Kapse NG, Engineer AS, Gowdaman V, Wagh S, Dhakephalkar PK. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics; 2018.  https://doi.org/10.1016/j.ygeno.2018.05.022.
  47. 47.
    Guo L, Li T, Tang Y, Yang L, Huo G. Probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Microb Biotechnol. 2016;9:737–45.CrossRefGoogle Scholar
  48. 48.
    Bayoumi MA, Griffiths MW. In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. Int J Food Microbiol. 2012;156:255–63.CrossRefGoogle Scholar
  49. 49.
    Skehan P, Storeng R, Scudiero D, Monks A, Mcmahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.CrossRefGoogle Scholar
  50. 50.
    Freshney IR. Culture of animal cell; a manual of basic technique and specialized applicaitons, vol. 1. Hoboken: Wiley; 2010. p. 676.Google Scholar
  51. 51.
    Raheel R, Ashraf M, Ejaz S, Javeed A, Altaf I. Assessment of the cytotoxic and anti-viral potential of aqueous extracts from different parts of Acacia nilotica (Linn) Delile against Peste des petits ruminants virus. Environ Toxicol Pharmacol. 2013;35:72–81.CrossRefGoogle Scholar
  52. 52.
    Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7.CrossRefGoogle Scholar
  53. 53.
    Sánchez B, Bressollier P, Urdaci MC. Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol. 2008;54:1–17.CrossRefGoogle Scholar
  54. 54.
    Kang JY, Lee DK, Ha NJ, Shin HS. Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J Microbiol. 2015;53:796–803.CrossRefGoogle Scholar
  55. 55.
    Al Kassaa I, Hober D, Hamze M, Chihib NE, Drider D. Antiviral potential of lactic acid Bacteria and their Bacteriocins. Probiotics Antimicrob Proteins. 2014;6:177–85.CrossRefGoogle Scholar
  56. 56.
    Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, et al. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol. 2009;9:1122–5.CrossRefGoogle Scholar
  57. 57.
    Guillemard E, Tondu F, Lacoin F, Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr. 2010;103:58–68.CrossRefGoogle Scholar
  58. 58.
    Kanmani P, Albarracin L, Kobayashi H, Hebert EM, Saavedra L, Komatsu R, et al. Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells. Front Immunol. 2018;9:2178.CrossRefGoogle Scholar
  59. 59.
    Wang Z, Zhang P, Fu W, Zhang Y, Li T, Pan B, et al. Effect of probiotics on Newcastle disease virus. Wei Sheng Wu Xue Bao. 2010;50:1664–9.Google Scholar
  60. 60.
    Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol. 2009;60(Suppl 6):19–26.Google Scholar
  61. 61.
    Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe. 2011;17:334–6.CrossRefGoogle Scholar
  62. 62.
    O’Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci. 2011;108:11217–22.CrossRefGoogle Scholar
  63. 63.
    Turroni F, Serafini F, Foroni E, Duranti S, O’Connell Motherway M, Taverniti V, et al. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci. 2013;110:11151–6.CrossRefGoogle Scholar
  64. 64.
    Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci. 2008;105:19474–9.CrossRefGoogle Scholar
  65. 65.
    Hynönen U, Palva A. 2013. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol. 2013;97:5225–43.CrossRefGoogle Scholar
  66. 66.
    Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of Lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat Inflamm. 2013;2013:1–16.CrossRefGoogle Scholar
  67. 67.
    Brinster S, Furlan S, Serror P. C-terminal WxL domain mediates cell wall binding in Enterococcus faecalis and other gram-positive bacteria. J Bacteriol. 2007;189:1244–53.CrossRefGoogle Scholar
  68. 68.
    Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, et al. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol. 2008;104:1667–74.CrossRefGoogle Scholar
  69. 69.
    Buck BL, Altermann E, Svingerud T, Klaenhammer TR. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2005;71:8344–51.CrossRefGoogle Scholar
  70. 70.
    Call EK, Goh YJ, Selle K, Klaenhammer TR, O’Flaherty S. Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiology. 2015;161:311–21.CrossRefGoogle Scholar
  71. 71.
    Мokrozub VV, Lazarenko LM, Sichel LM, Babenko LP, Lytvyn PM, Demchenko OM, et al. The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J. 2015;6:13.CrossRefGoogle Scholar
  72. 72.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23.CrossRefGoogle Scholar
  73. 73.
    Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352:535–8.CrossRefGoogle Scholar
  74. 74.
    Darouiche RO, Thornby JI, Stewart CC, Donovan WH, Hull RA. Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial. Clin Infect Dis. 2005;41:1531–4.CrossRefGoogle Scholar
  75. 75.
    Hilton E. Ingestion of yogurt containing Lactobacillus acidophilus as prophylaxis for Candidal vaginitis. Ann Intern Med. 1992;116:353–7.CrossRefGoogle Scholar

Copyright information

© European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2019

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Agricultural Microbiology Department, Faculty of AgricultureAin-Shams UniversityCairoEgypt

Personalised recommendations