Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.
Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.
PubMed
PubMed Central
Article
Google Scholar
Seifirad S. An emerging need for developing new models for myocardial infarction as a chronic complex disease: lessons learnt from animal vs. human studies on cardioprotective effects of erythropoietin in reperfused myocardium. Front Physiol. 2014;5:44. https://doi.org/10.3389/fphys.2014.00044.
PubMed
PubMed Central
Article
Google Scholar
Greek J, Shanks N. Thoughts on animal models for human disease and treatment. J Am Vet Med Assoc. 2009;235(4):363; author reply 4–5. https://doi.org/10.2460/javma.235.4.363.
PubMed
Article
Google Scholar
Hackam DG. Translating animal research into clinical benefit. BMJ. 2007;334(7586):163–4. https://doi.org/10.1136/bmj.39104.362951.80.
Seifirad S. A comprehensive model for the asthma paradox: is asthma a protective or a risk factor for malignancy? Med Hypotheses. 2019;130:109268. https://doi.org/10.1016/j.mehy.2019.109268.
PubMed
Article
Google Scholar
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.
PubMed
PubMed Central
Google Scholar
Arrowsmith J. Trial watch: phase III and submission failures: 2007-2010. Nat Rev Drug Discov 2011;10(2):87. doi:https://doi.org/10.1038/nrd3375.
Arrowsmith J. Trial watch: phase II failures: 2008-2010. Nat Rev Drug Discov. 2011;10(5):328–9. https://doi.org/10.1038/nrd3439.
CAS
Article
PubMed
Google Scholar
Domingo RT, Fries CC, Sawyer PN, Wesolowski SA. Peripheral arterial reconstruction: transplantation of autologous veins. Trans Am Soc Artif Intern Organs. 1963;9:305–11.
Hume DM, Merrill JP, Miller BF, Thorn GW. Experiences with renal homotransplantation in the human: report of nine cases. J Clin Invest. 1955;34(2):327–82. https://doi.org/10.1172/JCI103085.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hajar R. Statins: past and present. Heart Views. 2011;12(3):121–7. https://doi.org/10.4103/1995-705X.95070.
PubMed
PubMed Central
Article
Google Scholar
Dowdle WR, Birmingham ME. The biologic principles of poliovirus eradication. J Infect Dis. 1997;175(Suppl 1):S286–92.
PubMed
Article
Google Scholar
Hackam DG, Hackam AS. Translation of genetic discoveries into clinical therapies. Ann Intern Med. 2008;148(3):246–7.
PubMed
Article
Google Scholar
Marwick C. FDA halts gene therapy trials after leukaemia case in France. BMJ. 2003 Jan 25;326(7382):181.
PubMed
PubMed Central
Article
Google Scholar
Marshall E. FDA halts all gene therapy trials at Penn. Science. 2000;28;287(5453):565,567.
PubMed
Google Scholar
Juni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ. 2001;323(7303):42–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. https://doi.org/10.1371/journal.pmed.1000245.
Duarte AA, Mohsin S, Golubnitschaja O. Diabetes care in figures: current pitfalls and future scenario. EPMA J. 2018;9(2):125–31. https://doi.org/10.1007/s13167-018-0133-y.
PubMed
PubMed Central
Article
Google Scholar
Golubnitschaja O. Time for new guidelines in advanced diabetes care: paradigm change from delayed interventional approach to predictive, preventive & personalized medicine. EPMA J. 2010;1(1):3–12. https://doi.org/10.1007/s13167-010-0014-5.
PubMed
PubMed Central
Article
Google Scholar
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protocols Pharmacol. 2015;70(1):5.47.1–20. https://doi.org/10.1002/0471141755.ph0547s70.
Article
Google Scholar
King A, Bowe J. Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016;99:1–10. https://doi.org/10.1016/j.bcp.2015.08.108.
CAS
PubMed
Article
Google Scholar
Shiota M, Printz RL. Diabetes in Zucker diabetic fatty rat. Methods Mol Biol. 2012;933:103–23. https://doi.org/10.1007/978-1-62703-068-7_8.
CAS
PubMed
Article
Google Scholar
Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today. 2012;17(9–10):419–24. https://doi.org/10.1016/j.drudis.2011.12.020.
CAS
Article
PubMed
Google Scholar
Lave LB, Ennever FK, Rosenkranz HS, Omenn GS. Information value of the rodent bioassay. Nature. 1988;336(6200):631–3. https://doi.org/10.1038/336631a0.
CAS
PubMed
Article
Google Scholar
Ennever FK, Lave LB. Implications of the lack of accuracy of the lifetime rodent bioassay for predicting human carcinogenicity. Regul Toxicol Pharmacol. 2003;38(1):52–7.
Omenn GS, Stuebbe S, Lave LB. Predictions of rodent carcinogenicity testing results: interpretation in light of the Lave-Omenn value-of-information model. Mol Carcinog. 1995;14(1):37–45.
CAS
PubMed
Article
Google Scholar
McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–71. https://doi.org/10.1016/j.bcp.2013.08.006.
CAS
PubMed
Article
Google Scholar
Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014;87(1):150–61. https://doi.org/10.1016/j.bcp.2013.06.020.
CAS
PubMed
Article
Google Scholar
Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan AW, Cronin E, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;3(8):e3081. https://doi.org/10.1371/journal.pone.0003081.
Hakem R, Mak TW. Animal models of tumor-suppressor genes. Annu Rev Genet. 2001;35:209–41. https://doi.org/10.1146/annurev.genet.35.102401.090432.
CAS
PubMed
Article
Google Scholar
Polivka J Jr, Kralickova M, Polivka J, Kaiser C, Kuhn W, Golubnitschaja O. Mystery of the brain metastatic disease in breast cancer patients: improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 2017;8(2):119–27. https://doi.org/10.1007/s13167-017-0087-5.
PubMed
PubMed Central
Article
Google Scholar
Janssens JP, Schuster K, Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9(2):113–23. https://doi.org/10.1007/s13167-018-0130-1.
PubMed
PubMed Central
Article
Google Scholar
Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5(1):6. https://doi.org/10.1186/1878-5085-5-6.
PubMed
PubMed Central
Article
Google Scholar
Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al. Breast cancer—major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290–303. https://doi.org/10.3322/caac.21393.
Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5. https://doi.org/10.1245/s10434-018-6486-6.
PubMed
Article
Google Scholar
Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pesta M, Costigliola V, et al. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol. 2016;37(10):12941–57. https://doi.org/10.1007/s13277-016-5168-x.
Smokovski I, Risteski M, Polivka J Jr, Zubor P, Konieczka K, Costigliola V, et al. Postmenopausal breast cancer: European challenge and innovative concepts. EPMA J. 2017;8(2):159–69. https://doi.org/10.1007/s13167-017-0094-6.
PubMed
PubMed Central
Article
Google Scholar
Ellison GD. Animal models of psychopathology. The low-norepinephrine and low-serotonin rat. Am Psychol. 1977;32(12):1036–45.
CAS
PubMed
Article
Google Scholar
Paterson NE, Markou A. Animal models and treatments for addiction and depression co-morbidity. Neurotox Res 2007;11(1):1–32, 1.
Czeh B, Fuchs E, Wiborg O, Simon M. Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:293–310. https://doi.org/10.1016/j.pnpbp.2015.04.004.
Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull. 2010 Aug;26(4):327–37.
CAS
PubMed
PubMed Central
Article
Google Scholar
Fuchs E, Fliugge G. Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci. 2006;8(3):323–33.
PubMed
PubMed Central
Google Scholar
Harro J. Animal models of depression vulnerability. Curr Top Behav Neurosci. 2013;14:29–54. https://doi.org/10.1007/7854_2012_221.
PubMed
Article
Google Scholar
Jesberger JA, Richardson JS. Animal models of depression: parallels and correlates to severe depression in humans. Biol Psychiatry. 1985;20(7):764–84.
CAS
PubMed
Article
Google Scholar
Matthews K, Christmas D, Swan J, Sorrell E. Animal models of depression: navigating through the clinical fog. Neurosci Biobehav Rev. 2005;29(4–5):503–13. https://doi.org/10.1016/j.neubiorev.2005.03.005.
PubMed
Article
Google Scholar
McArthur R, Borsini F. Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav. 2006;84(3):436–52. https://doi.org/10.1016/j.pbb.2006.06.005.
CAS
PubMed
Article
Google Scholar
McKinney WT. Animal models of depression: an overview. Psychiatric developments. 1984;2(2):77–96.
CAS
PubMed
Google Scholar
Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, et al. Animal models of depression and anxiety: what do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(6):1357–75. https://doi.org/10.1016/j.pnpbp.2010.11.028.
Overstreet DH. Modeling depression in animal models. Methods Mol Biol. 2012;829:125–44. https://doi.org/10.1007/978-1-61779-458-2_7.
CAS
PubMed
Article
Google Scholar
Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z. Sex differences in animal models of depression and antidepressant response. Basic Clin Pharmacol Toxicol. 2010;106(3):226–33. https://doi.org/10.1111/j.1742-7843.2009.00516.x.
CAS
PubMed
Article
Google Scholar
Ma L, Xu Y, Wang G, Li R. What do we know about sex differences in depression: a review of animal models and potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2018;89:48–56. https://doi.org/10.1016/j.pnpbp.2018.08.026.
Palanza P. Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev. 2001;25(3):219–33.
CAS
PubMed
Article
Google Scholar
Renaud A. Animal models of depression. Soins Psychiatr. 1988(88):10–3.
Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler. 2008;9(1):4–15. https://doi.org/10.1080/17482960701856300.
Wegorzewska I, Baloh RH. TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis. 2011;8(4):262–74. https://doi.org/10.1159/000321547.
CAS
PubMed
Article
Google Scholar
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106(44):18809–14. https://doi.org/10.1073/pnas.0908767106.
PubMed
Article
PubMed Central
Google Scholar
Wyand MS. The use of SIV-infected rhesus monkeys for the preclinical evaluation of AIDS drugs and vaccines. AIDS Res Hum Retrovir. 1992;8(3):349–56. https://doi.org/10.1089/aid.1992.8.349.
CAS
PubMed
Article
Google Scholar
Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, et al. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248(4953):358–61.
Sweet A, Erickson RP, Huntington C, Dawson D. A potential animal model for studying CF heterozygote advantage: genetic variation in theophylline-inducible colonic chloride currents among inbred strains of mice. Biochem Med Metab Biol. 1992;47(1):97–102.
CAS
PubMed
Article
Google Scholar
Barinaga M. Knockout mice offer first animal model for CF. Science. 1992;257(5073):1046–7.
CAS
PubMed
Article
Google Scholar
Knight A, Bailey J, Balcombe J. Animal carcinogenicity studies: 3. Alternatives to the bioassay. Altern Lab Anim. 2006;34(1):39–48.
Knight A, Bailey J, Balcombe J. Animal carcinogenicity studies: 1. Poor human predictivity. Altern Lab Anim. 2006;34(1):19–27.
Ujhazy E, Mach M, Navarova J, Brucknerova I, Dubovicky M. Teratology—past, present and future. Interdiscip Toxicol. 2012;5(4):163–8. https://doi.org/10.2478/v10102-012-0027-0.
PubMed
PubMed Central
Article
Google Scholar
Hanke T. Lessons from TGN1412. Lancet. 2006;368(9547):1569–70; author reply 70. https://doi.org/10.1016/S0140-6736(06)69651-7.
PubMed
Article
Google Scholar
Jerie P. New catastrophe in pharmacological treatment—the crisis of clinical studies? Acute organ failure after administration of TGN1412. Casopis lekaru ceskych. 2006;145(6):426.
CAS
PubMed
Google Scholar
Kenter MJ, Cohen AF. Establishing risk of human experimentation with drugs: lessons from TGN1412. Lancet. 2006;368(9544):1387–91. https://doi.org/10.1016/S0140-6736(06)69562-7.
CAS
PubMed
Article
Google Scholar
Enterline PE. Early animal research on asbestos cancer. Am J Ind Med. 1993;24(6):783–5 author reply 7-91.
CAS
PubMed
Article
Google Scholar
Enterline PE, Hartley J, Henderson V. Asbestos and cancer: a cohort followed up to death. Br J Ind Med. 1987;44(6):396–401.
CAS
PubMed
PubMed Central
Google Scholar
Stewart A. Alternative sources of risk estimates for cancer effects of radiation. Mt Sinai J Med. 1995;62(5):380–5.
Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ. 1990;300(6722):423–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ainley CC, Senapati A, Brown IM, Iles CA, Slavin BM, Mitchell WD, et al. Is alcohol hepatotoxic in the baboon? J Hepatol. 1988;7(1):85–92.
CAS
PubMed
Article
Google Scholar
Zbinden G, Flury-Roversi M. Significance of the LD50-test for the toxicological evaluation of chemical substances. Arch Toxicol. 1981;47(2):77–99.
CAS
PubMed
Article
Google Scholar
Ekwall B, Barile FA, Castano A, Clemedson C, Clothier RH, Dierickx P, et al. MEIC evaluation of acute systemic toxicity: part VI. The prediction of human toxicity by rodent LD50 values and results from 61 in vitro methods. Altern Lab Anim. 1998;26(Suppl 2):617–58.
Ekwall B, Clemedson C, Crafoord B, Ekwall B, Hallander S, Walum E, et al. MEIC evaluation of acute systemic toxicity: part V. Rodent and human toxicity data for the 50 reference chemicals. Altern Lab Anim. 1998;26(Suppl 2):571–616.
Kelly JT, Abuzzahab FS Sr. The antiparkinson properties of amantadine in drug-induced parkinsonism. J Clin Pharmacol New Drugs. 1971;11(3):211–4.
CAS
PubMed
Google Scholar
Danielczyk W. Twenty-five years of amantadine therapy in Parkinson’s disease. J Neural Transm Suppl. 1995;46:399–405.
CAS
PubMed
Google Scholar
Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012 Apr 3;78(14):1096–9.
CAS
PubMed
Article
Google Scholar
Ban TA. Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat. 2007;3(4):495–500.
CAS
PubMed
PubMed Central
Google Scholar
Anisimov VN. Age and dose-dependent carcinogenic effects of N-nitrosomethylurea administered intraperitoneally in a single dose to young and adult female mice. J Cancer Res Clin Oncol. 1993;119(11):657–64.
CAS
PubMed
Article
Google Scholar
Anisimov VN. Carcinogenesis and aging. III. The role of age in initiation and promotion of carcinogenesis. Exp Pathol. 1982;22(3):131–47.
CAS
PubMed
Article
Google Scholar
Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4(2):2. https://doi.org/10.1186/1747-5341-4-2.
Bruno R, Vivier N, Montay G, Le Liboux A, Powe LK, Delumeau JC, et al. Population pharmacokinetics of riluzole in patients with amyotrophic lateral sclerosis. Clin Pharmacol Ther. 1997;62(5):518–26. https://doi.org/10.1016/S0009-9236(97)90047-3.
CAS
PubMed
Article
Google Scholar
Lidegaard O. Smoking and use of oral contraceptives: impact on thrombotic diseases. Am J Obstet Gynecol. 1999;180(6 Pt 2):S357–63.
CAS
PubMed
Article
Google Scholar
Formenty P, Boesch C, Wyers M, Steiner C, Donati F, Dind F, et al. Ebola virus outbreak among wild chimpanzees living in a rain forest of Cote d’Ivoire. J Infect Dis. 1999;179(Suppl 1):S120–6. https://doi.org/10.1086/514296.
Pennisi E. Monkey virus DNA found in rare human cancers. Science. 1997;275(5301):748–9.
CAS
PubMed
Article
Google Scholar
Reinhardt V, Roberts A. The African polio vaccine-acquired immune deficiency syndrome connection. Med Hypotheses. 1997;48(5):367–74.
CAS
PubMed
Article
Google Scholar
Lucas S. The river: a journey back to the source of HIV and AIDS. BMJ. 2000;320(7247):1481A.
CAS
PubMed
Article
Google Scholar
Folks TM. Chimpanzees as original source for HIV. JAMA. 2000;283(3):310.
CAS
PubMed
Article
Google Scholar
Horowitz LG. Murder and cover-up could explain the Florida dental AIDS mystery. Br Dent J. 1994 Dec 10–24;177(11–12):423–7.
Hayflick L. The choice of the cell substrate for human virus vaccine production. Lab Pract. 1970;19(1):58–62.
CAS
PubMed
Google Scholar
Hayflick L. Human virus vaccines: why monkey cells? Science. 1972;176(4036):813–4.
Article
Google Scholar
King A. The search for better animal models of Alzheimer’s disease. Nature. 2018;559(7715):S13–S5. https://doi.org/10.1038/d41586-018-05722-9.
CAS
PubMed
Article
Google Scholar
Kitazawa M, Medeiros R, Laferla FM. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012;18(8):1131–47.
CAS
PubMed
PubMed Central
Article
Google Scholar
LaFerla FM, Green KN. Animal models of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(11). https://doi.org/10.1101/cshperspect.a006320.
Morrissette DA, Parachikova A, Green KN, LaFerla FM. Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem. 2009;284(10):6033–7. https://doi.org/10.1074/jbc.R800030200.
CAS
PubMed
Article
Google Scholar
Roher AE, Kuo YM, Kokjohn KM, Emmerling MR, Gracon S. Amyloid and lipids in the pathology of Alzheimer disease. Amyloid. 1999;6(2):136–45.
CAS
PubMed
Article
Google Scholar
Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, et al. The evolution of a beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med. 2001;7(9):609–18.
Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, et al. The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol. 2004;188(2):224–37. https://doi.org/10.1016/j.expneurol.2004.04.002.
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 2017;8(1):23–33. https://doi.org/10.1007/s13167-017-0081-y.
PubMed
PubMed Central
Article
Google Scholar
Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. J Vis Exp. 2013;(75):e50265. https://doi.org/10.3791/50265.
Balls M. Replacement of animal procedures: alternatives in research, education and testing. Lab Anim. 1994;28(3):193–211.
CAS
PubMed
Article
Google Scholar
Kirk RG. Recovering the principles of humane experimental technique: the 3Rs and the human essence of animal research. Sci Technol Human Values. 2018 Jul;43(4):622–48. https://doi.org/10.1177/0162243917726579.
PubMed
Article
Google Scholar
Arora T, Mehta AK, Joshi V, Mehta KD, Rathor N, Mediratta PK, et al. Substitute of animals in drug research: an approach towards fulfillment of 4R’s. Indian J Pharm Sci. 2011 Jan-Feb;73:1): 1–6.
PubMed
PubMed Central
Google Scholar
Gordon S, Daneshian M, Bouwstra J, Caloni F, Constant S, Davies DE, et al. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. Altex. 2015;32(4):327–78. https://doi.org/10.14573/altex.1510051.
Zhang Q, Bhattacharya S, Andersen ME, Conolly RB. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):253–76. https://doi.org/10.1080/10937404.2010.483943.
CAS
PubMed
Article
Google Scholar
Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm. J. 2015;23(3):223–9.
PubMed
Article
Google Scholar
Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler J, Kahl R, et al. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol. 2008;82(4):211–36.
CAS
PubMed
Article
Google Scholar
Gruber FP, Hartung T. Alternatives to animal experimentation in basic research. Altex. 2004;21:3–31.
PubMed
Google Scholar
Glanzer JG, Byrne BM, McCoy AM, James BJ, Frank JD, Oakley GG. In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors. Bioorg Med Chem. 2016;24(21):5388–92. https://doi.org/10.1016/j.bmc.2016.08.065.
CAS
PubMed
PubMed Central
Article
Google Scholar
Freires IA, Sardi JCO, de Castro RD, Rosalen PL. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharm Res. 2017;34(4):681–6.
CAS
PubMed
Article
Google Scholar
Mosig AS. Organ-on-chip models: new opportunities for biomedical research. Future Sci OA. 2016 Jun;3(2):FSO130. Published online 2016 Jul 6. https://doi.org/10.4155/fsoa-2016-0038.
Beeson PB. The growth of knowledge about a disease: hepatitis. Am J Med. 1979;67(3):366–70.
CAS
PubMed
Article
Google Scholar
Kannel WB, Castelli WP, McNamara PM, McKee PA, Feinleib M. Role of blood pressure in the development of congestive heart failure. N Engl J Med. 1972;287(16):781–7. https://doi.org/10.1056/NEJM197210192871601.
Sytkowski PA, Kannel WB, D'Agostino RB. Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. N Engl J Med. 1990;322(23):1635–41. https://doi.org/10.1056/NEJM199006073222304.
Sekula P, Del Greco MF, Pattaro C, Kottgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol: JASN. 2016;27(11):3253–65. https://doi.org/10.1681/ASN.2016010098.
PubMed
Article
PubMed Central
Google Scholar
Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman AK, Aslibekyan S, et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med. 2017;14(1):e1002215. https://doi.org/10.1371/journal.pmed.1002215.
Holmes MV, Lange LA, Palmer T, Lanktree MB, North KE, Almoguera B, et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94(2):198–208. https://doi.org/10.1016/j.ajhg.2013.12.014.
Shah S, Casas JP, Drenos F, Whittaker J, Deanfield J, Swerdlow DI, et al. Causal relevance of blood lipid fractions in the development of carotid atherosclerosis: Mendelian randomization analysis. Circ Cardiovasc Genet. 2013;6(1):63–72. https://doi.org/10.1161/CIRCGENETICS.112.963140.
Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14(10):577–90. https://doi.org/10.1038/nrcardio.2017.78.
CAS
PubMed
PubMed Central
Article
Google Scholar
Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50. https://doi.org/10.1093/eurheartj/eht571.
Ahnen DJ. Are animal models of colon cancer relevant to human disease. Dig Dis Sci. 1985;30(12 Suppl):103S–6S.
CAS
PubMed
Article
Google Scholar
Pories SE, Ramchurren N, Summerhayes I, Steele G. Animal models for colon carcinogenesis. Arch Surg. 1993;128(6):647–53.
CAS
PubMed
Article
Google Scholar
Ali J, Dunn J, Eason M, Drumm J. Comparing the standardized live trauma patient and the mechanical simulator models in the ATLS initial assessment station. J Surg Res. 2010;162(1):7–10. https://doi.org/10.1016/j.jss.2010.02.029.
PubMed
Article
Google Scholar
Gilbart MK, Hutchison CR, Cusimano MD, Regehr G. A computer-based trauma simulator for teaching trauma management skills. Am J Surg. 2000;179(3):223–8.
CAS
PubMed
Article
Google Scholar
Tillander B, Ledin T, Nordqvist P, Skarman E, Wahlstrom O. A virtual reality trauma simulator. Med Teach. 2004;26(2):189–91. https://doi.org/10.1080/0142159042000192037.
CAS
PubMed
Article
Google Scholar
Bergstrom M. The use of microdosing in the development of small organic and protein therapeutics. J Nucl Med. 2017;58(8):1188–95. https://doi.org/10.2967/jnumed.116.188037.
CAS
PubMed
Article
Google Scholar
Burt T, John CS, Ruckle JL, Vuong LT. Phase-0/microdosing studies using PET, AMS, and LC-MS/MS: a range of study methodologies and conduct considerations. Accelerating development of novel pharmaceuticals through safe testing in humans—a practical guide. Expert Opin Drug Deliv. 2017;14(5):657–72. https://doi.org/10.1080/17425247.2016.1227786.
CAS
PubMed
Article
Google Scholar
Wotherspoon AT, Safavi-Naeini M, Banati RB. Microdosing, isotopic labeling, radiotracers and metabolomics: relevance in drug discovery, development and safety. Bioanalysis. 2017;9(23):1913–33. https://doi.org/10.4155/bio-2017-0137.
CAS
PubMed
Article
Google Scholar
Xu K-P, Li X-F, F-SX Y. Corneal organ culture model for assessing epithelial responses to surfactants. Toxicol Sci. 2000;58(2):306–14.
CAS
PubMed
Article
Google Scholar
Shay JW, Wright WE. The use of telomerized cells for tissue engineering. Nat Biotechnol. 2000;18(1):22–3.
CAS
PubMed
Article
Google Scholar
Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005;86(1):6–19.
CAS
PubMed
Article
Google Scholar
Peterson RT, Nass R, Boyd WA, Freedman JH, Dong K, Narahashi T. Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology. 2008;29(3):546–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lagadic L, Caquet T. Invertebrates in testing of environmental chemicals: are they alternatives? Environ Health Perspect. 1998;106(Suppl 2):593–611.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wilson-Sanders SE. Invertebrate models for biomedical research, testing, and education. ILAR J. 2011;52(2):126–52.
CAS
PubMed
Article
Google Scholar
Gilbert LI. Drosophila is an inclusive model for human diseases, growth and development. Mol Cell Endocrinol. 2008;293(1–2):25–31.
CAS
PubMed
Article
Google Scholar
Barr MM. Super models. Physiol Genomics. 2003;13(1):15–24.
CAS
PubMed
Article
Google Scholar
Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, et al. Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet. 2002;41(4):208–16.
Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One. 2011;6(2):e16015.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hedges SB. The origin and evolution of model organisms. Nat Rev Genet. 2002;3(11):838–49.
CAS
PubMed
Article
Google Scholar
Höfer T, Gerner I, Gundert-Remy U, Liebsch M, Schulte A, Spielmann H, et al. Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation. Arch Toxicol. 2004;78(10):549–64.
PubMed
Article
CAS
Google Scholar
Creech JL Jr, Johnson MN. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J Occup Med. 1974;16(3):150–1.
PubMed
Google Scholar
Davies MR, Hruska KA. Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney Int. 2001;60(2):472–9.
CAS
PubMed
Article
Google Scholar
Hendriksen CF. Replacement, reduction and refinement alternatives to animal use in vaccine potency measurement. Expert Rev Vaccines. 2009;8(3):313–22.
CAS
PubMed
Article
Google Scholar
Dezfulian M, Bartlett JG. Selective isolation and rapid identification of Clostridium botulinum types A and B by toxin detection. J Clin Microbiol. 1985;21(2):231–3.
CAS
PubMed
PubMed Central
Google Scholar
Flaten GE, Dhanikula AB, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci. 2006;27(1):80–90.
CAS
PubMed
Article
Google Scholar