Skip to main content

Advertisement

Log in

Associations between the red blood cell distribution width and primary angle-closure glaucoma: a potential for disease prediction

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

The red blood cell distribution width (RDW) is a simple and inexpensive laboratory parameter that can be linked to oxidative stress, inflammation and microvascular flow resistance. For this research, we performed a large-sample case-control study to describe the relationships between the RDW and primary angle-closure glaucoma (PACG). A total of 1191 PACG patients (422 males and 769 females), who were divided into mild, moderate and severe PACG groups, and 982 healthy controls (344 males and 638 females) were recruited between January 2008 and June 2018. Detailed eye and physical examinations were performed for each subject. Based on the laboratory results, the mean RDW was significantly higher (p < 0.001) in the PACG group (13.01 ± 0.82%) than in the control group (12.65 ± 0.53%). Moreover, the mean RDW level was lower (p < 0.05) in the mild PACG group than in the moderate and severe PACG groups. The Pearson correlation analyses showed significant positive correlations between the mean deviation and the RDW (r = 0.141, p < 0.001) and the intraocular pressure and the RDW (r = 0.085, p = 0.004). After adjusting for the confounding factors, the logistic regression analyses indicated that the odds ratio for the PACG group was 2.318 (p < 0.001, 95% confidence interval 1.997, 2.690) when compared to the control group. Additionally, an increased RDW was associated with the PACG severity, and this trend was also observed in the gender and age subgroups. In summary, the results of our study showed that an elevated RDW was associated with PACG and its severity. If future studies confirm this relationship, the use of an RDW assessment may help to predict the PACG severity in each patient in order to better customise effective prevention treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet Lond Engl. 2017;390:2183–93.

    Article  Google Scholar 

  2. Song P, Wang J, Bucan K, Theodoratou E, Rudan I, Chan KY. National and subnational prevalence and burden of glaucoma in China: a systematic analysis. J Glob Health. 2017;7:020705.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li S, Cao W, Han J, Tang B, Sun X. The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma. Oncotarget. 2017;8:68984–95.

    PubMed  PubMed Central  Google Scholar 

  4. Zhang S, Wu C, Liu L, Jia Y, Zhang Y, Zhang Y, et al. Optical coherence tomography angiography of the Peripapillary retina in primary angle-closure glaucoma. Am J Ophthalmol. 2017;182:194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Binggeli T, Schoetzau A, Konieczka K. In glaucoma patients, low blood pressure is accompanied by vascular dysregulation. EPMA J. 2018;9:387–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mustur D, Vahedian Z, Bovet J, Mozaffarieh M. Retinal venous pressure measurements in patients with Flammer syndrome and metabolic syndrome. EPMA J. 2017;8:339–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective. EPMA J. 2017;8:75–97.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abegão Pinto L, Willekens K, Van Keer K, Shibesh A, Molenberghs G, Vandewalle E, et al. Ocular blood flow in glaucoma—the Leuven eye study. Acta Ophthalmol. 2016;94:592–8.

    Article  PubMed  Google Scholar 

  9. Yamada Y, Higashide T, Udagawa S, Takeshima S, Sakaguchi K, Nitta K. Sugiyama, K. J Glaucoma: The relationship between interocular asymmetry of visual field defects and optic nerve head blood flow in patients with glaucoma; 2018.

    Google Scholar 

  10. Hondur G, Göktas E, Yang X, Al-Aswad L, Auran JD, Blumberg DM, et al. Oxidative stress-related molecular biomarker candidates for glaucoma. Invest Ophthalmol Vis Sci. 2017;58:4078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T. Targeting oxidative stress for treatment of glaucoma and optic neuritis. Oxidative Med Cell Longev. 2017;2017:2817252.

    Article  CAS  Google Scholar 

  12. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52:86–105.

    Article  Google Scholar 

  13. Akpinar I, Sayin MR, Gursoy YC, Aktop Z, Karabag T, Kucuk E, et al. Plateletcrit and red cell distribution width are independent predictors of the slow coronary flow phenomenon. J Cardiol. 2014;63:112–8.

    Article  PubMed  Google Scholar 

  14. Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med. 2009;133:628–32.

    CAS  PubMed  Google Scholar 

  15. Semba RD, Patel KV, Ferrucci L, Sun K, Roy CN, Guralnik JM, et al. Serum antioxidants and inflammation predict red cell distribution width in older women: the Women’s health and aging study I. Clin Nutr Edinb Scotl. 2010;29:600–4.

    Article  CAS  Google Scholar 

  16. Golubnitschaja O, Costigliola V,  EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3:14.

  17. Verma S, Nongpiur ME, Atalay E, Wei X, Husain R, Goh D, et al. Visual field progression in patients with primary angle-closure glaucoma using pointwise linear regression analysis. Ophthalmology. 2017;124:1065–71.

    Article  PubMed  Google Scholar 

  18. Kurysheva NI, Ryabova TY, Shlapak VN. Heart rate variability: the comparison between high tension and normal tension glaucoma. EPMA J. 2018;9:35–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun X, Dai Y, Chen Y, Yu D-Y, Cringle SJ, Chen J, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.

    Article  PubMed  Google Scholar 

  20. Takahashi G, Otori Y, Urashima M, Kuwayama Y. Quality of life improvement committee evaluation of quality of life in Japanese glaucoma patients and its relationship with visual function. J Glaucoma. 2016;25:e150–6.

    Article  PubMed  Google Scholar 

  21. Sabel BA, Wang J, Cárdenas-Morales L, Faiq M, Heim C. Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J. 2018;9:133–60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vahedian Z, Fakhraie G, Bovet J, Mozaffarieh M. Nutritional recommendations for individuals with Flammer syndrome. EPMA J. 2017;8:187–95.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tajuddin SM, Nalls MA, Zonderman AB, Evans MK. Association of red cell distribution width with all-cause and cardiovascular-specific mortality in African American and white adults: a prospective cohort study. J Transl Med. 2017;15:208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tonelli M, Sacks F, Arnold M, Moye L, Davis B, Pfeffer M, et al. relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.

    Article  PubMed  Google Scholar 

  25. Montagnana M, Danese E. Red cell distribution width and cancer. Ann Transl Med. 2016;4:399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garofoli F, Ciardelli L, Mazzucchelli I, Borghesi A, Angelini M, Bollani L, et al. The red cell distribution width (RDW): value and role in preterm, IUGR (intrauterine growth restricted), full-term infants. Hematol Amst Neth. 2014;19:365–9.

    Google Scholar 

  27. Chidlow G, Wood JPM, Casson RJ. Investigations into hypoxia and oxidative stress at the optic nerve head in a rat model of glaucoma. Front Neurosci. 2017;11:478.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Chen S, Liu Y, Huang W, Li X, Zhang X. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma. Biosci Rep. 2018;38:BSR20181411.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li S, Zhang A, Cao W, Sun X. Elevated plasma endothelin-1 levels in normal tension glaucoma and primary open-angle glaucoma: a meta-analysis. J Ophthalmol. 2016;2016:2678017.

    PubMed  PubMed Central  Google Scholar 

  30. Duvesh R, Puthuran G, Srinivasan K, Rengaraj V, Krishnadas SR, Rajendrababu S, et al. Multiplex cytokine analysis of aqueous humor from the patients with chronic primary angle closure glaucoma. Curr Eye Res. 2017;42:1608–13.

    Article  CAS  PubMed  Google Scholar 

  31. Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB, et al. Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2010;65:258–65.

    Article  PubMed  Google Scholar 

  32. Goyal A, Srivastava A, Sihota R, Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39:823–9.

    Article  CAS  PubMed  Google Scholar 

  33. Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One. 2016;11:e0166915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol. 2000;7:113–6.

    Article  CAS  PubMed  Google Scholar 

  35. Su W-W, Cheng S-T, Ho W-J, Tsay P-K, Wu S-C, Chang SHL. Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology. 2008;115:1173–1178.e1.

    Article  PubMed  Google Scholar 

  36. Hafez AS, Bizzarro RLG, Rivard M, Lesk MR. Changes in optic nerve head blood flow after therapeutic intraocular pressure reduction in glaucoma patients and ocular hypertensives. Ophthalmology. 2003;110:201–10.

    Article  PubMed  Google Scholar 

  37. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol. 2013;13:36–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alattar FT, Imran NB, Patel P, Usmani S, Shamoon FE. Red cell distribution width (RDW) correlates with markers of diastolic dysfunction in patients with impaired left ventricular systolic function. Int J Cardiol Heart Vasc. 2016;10:13–6.

    PubMed  Google Scholar 

  39. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15.

    Article  PubMed  Google Scholar 

  40. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101:1066–70.

    Article  PubMed  Google Scholar 

  41. Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31500148).

Author information

Authors and Affiliations

Authors

Contributions

Q C, B Z and YJ L designed the study; BZ, MY W and YJ L contributed to the patient recruitment and collected the data; XY C, D L, XQ J and JH T performed the statistical analysis; Q C wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong-jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Written informed consent for the use of any clinical data in research was obtained for all patients. All individuals were informed about the purposes of the study and have signed their consent for publishing the data.

Ethical approval

All the patient investigations conformed to the principles outlined in the Declaration of Helsinki, and the study was approved by the ethical committee of the Affiliated Hospital of Taishan Medical University and the ethical committee of the Taian City Central Hospital, Shandong, China. All the patients were informed about the purposes of the study and have signed their “consent of the patient.” This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhao, B., Wang, My. et al. Associations between the red blood cell distribution width and primary angle-closure glaucoma: a potential for disease prediction. EPMA Journal 10, 185–193 (2019). https://doi.org/10.1007/s13167-019-00166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-019-00166-1

Keywords

Navigation