Skip to main content

Advertisement

Log in

Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma: a predictive, preventive and personalized medical approach in adrenal incidentalomas

EPMA Journal Aims and scope Submit manuscript

Abstract

Objectives

This study aims to define a radiomic signature for pre-operative differentiation between subclinical pheochromocytoma (sPHEO) and lipid-poor adrenal adenoma (LPA) in adrenal incidentaloma. The goal was to apply a predictive, preventive, and personalized medical approach to the management of adrenal tumors.

Patients and methods

This retrospective study consisted of 265 consecutive patients (training cohort, 212 (LPA, 145; sPHEO, 67); validation cohort, 53 (LPA, 36; sPHEO, 17)). Computed tomography (CT) imaging features were evaluated, including long diameter (LD), short diameter (SD), pre-enhanced CT value (CTpre), enhanced CT value (CTpost), shape, homogeneity, necrosis or cystic degeneration (N/C). Radiomic features were extracted and then were used to construct a radiomic signature (Rad-score) and radiomic nomogram. The area under the receiver operating characteristic curve (AUC) was used to evaluate their performance.

Results

Sixteen of three hundred forty candidate features were used to build a radiomic signature. The signature was significantly different between the sPHEO and LPA groups (AUC: training, 0.907; validation, 0.902). The radiomic nomogram based on enhanced CT features (M1) consisted of Rad-score, LD, SD, CTpre, shape, homogeneity and N/C (AUC: training, 0.957; validation, 0.967). The pre-enhanced CT features based radiomic nomogram (M2) included Rad-score, LD, SD, CTpre, shape, and homogeneity (AUC: training, 0.955; validation, 0.958).

Conclusions

Our radiomic nomograms based on pre-enhanced and enhanced CT images distinguished sPHEO from LPA. In addition, the promising result using pre-enhanced CT images for predictive diagnostics is important because patients could avoid the additional radiation and risk associated with enhanced CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Adrenal adenoma

AI:

Adrenal incidentaloma

AUC:

Area under the receiver operating characteristic curve

CT:

Computed tomography

CTpre :

Pre-enhanced CT value

CTpost :

Enhanced CT value

ICC:

Intraclass correlation coefficient

LASSO:

Least absolute shrinkage and selection operator

LD:

Long diameter

LPA:

Lipid-poor adrenal adenoma

MRI:

Magnetic resonance imaging

N/C:

Necrosis or cystic degeneration

PET:

Positron emission tomography

sPHEO:

Subclinical pheochromocytoma

ROC:

Receiver operating characteristic

SD:

Short diameter

References

  1. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation-EPMA position paper 2016. EPMA J. 2016;7(23):23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, et al. EPMA position paper in cancer: current overview and future perspectives. EPMA J. 2015;6(9):9. https://doi.org/10.1186/s13167-015-0030-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Golubnitschaja O, Costigliola V. General report and recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3:14. https://doi.org/10.1186/1878-5085-3-14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Umanodan T, Fukukura Y, Kumagae Y, Shindo T, Nakajo M, Takumi K, et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma. J Magn Reson Imaging. 2017;45:1195–203. https://doi.org/10.1002/jmri.25452.

    Article  PubMed  Google Scholar 

  5. Park BK, Kim B, Ko K, Jeong SY, Kwon GY. Adrenal masses falsely diagnosed as adenomas on unenhanced and delayed contrast-enhanced computed tomography: pathological correlation. Eur Radiol. 2006;16:642–7. https://doi.org/10.1007/s00330-005-0017-0.

    Article  PubMed  Google Scholar 

  6. Park BK, Kim CK, Kwon GY, Kim JH. Re-evaluation of pheochromocytomas on delayed contrast-enhanced CT: washout enhancement and other imaging features. Eur Radiol. 2007;17:2804–9. https://doi.org/10.1007/s00330-007-0695-x.

    Article  PubMed  Google Scholar 

  7. Zhang Y, Cai P, Chen M, Yi X, Li L, Xiao D, et al. Imaging findings of adrenal primitive neuroectodermal tumors: a series of seven cases. Clin Transl Oncol. 2017;19:641–9. https://doi.org/10.1007/s12094-016-1580-3.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang YM, Lei PF, Chen MN, Lv XF, Ling YH, Cai PQ, et al. CT findings of adrenal schwannoma. Clin Radiol. 2016;71:464–70. https://doi.org/10.1016/j.crad.2016.01.010.

    Article  PubMed  Google Scholar 

  9. Zhou Y, Tang Y, Tang J, Deng F, Gong G, Dai Y. Primary adrenal leiomyosarcoma: a case report and review of literature. Int J Clin Exp Pathol. 2015;8:4258–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambin P, RTH L, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  11. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(4006):4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261:165–71. https://doi.org/10.1148/radiol.11110264.

    Article  PubMed  Google Scholar 

  13. Dennie C, Thornhill R, Sethi-Virmani V, Souza CA, Bayanati H, Gupta A, et al. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg. 2016;6:6–15. https://doi.org/10.3978/j.issn.2223-4292.2016.02.01.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol. 2017;28:1625–33. https://doi.org/10.1007/s00330-017-5118-z.

    Article  PubMed  Google Scholar 

  15. Chang K, Bai HX, Zhou H, Su C, Bi WL, Agbodza E, et al. Residual convolutional neural network for the determination of IDH Status in low- and high-grade gliomas from MR imaging. Clin Cancer Res. 2017;24:1073–81. https://doi.org/10.1158/1078-0432.CCR-17-2236.

    Article  CAS  PubMed  Google Scholar 

  16. Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer: the road to a multimarker approach. Expert Rev Anticancer Ther. 2007;7:1717–27. https://doi.org/10.1586/14737140.7.12.1717.

    Article  CAS  PubMed  Google Scholar 

  17. Croner RS, Förtsch T, Brückl WM, Rödel F, Rödel C, Papadopoulos T, et al. Molecular signature for lymphatic metastasis in colorectal carcinomas. Ann Surg. 2008;247:803–10. https://doi.org/10.1097/SLA.0b013e31816bcd49.

    Article  PubMed  Google Scholar 

  18. Cheng T, Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8:51–60. https://doi.org/10.1007/s13167-017-0083-9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Prog Biomed. 2009;94:66–76. https://doi.org/10.1016/j.cmpb.2008.08.005.

    Article  Google Scholar 

  20. Yi X, Long X, Xiao D, Zai H, Li Y. Rhabdomyosarcoma in adrenal region of a child with hypertension and fever: a case report and literature review. J Pediatr Surg. 2013;48:e5–8. https://doi.org/10.1016/j.jpedsurg.2013.01.018.

    Article  PubMed  Google Scholar 

  21. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34:2157–64. https://doi.org/10.1200/JCO.2015.65.9128.

    Article  PubMed  Google Scholar 

  22. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28:1191–206. https://doi.org/10.1093/annonc/mdx034.

    Article  CAS  PubMed  Google Scholar 

  23. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  24. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259–69. https://doi.org/10.1158/1078-0432.CCR-16-2910.

    Article  PubMed  Google Scholar 

  25. Zhang B, He X, Ouyang F, Gu D, Dong Y, Zhang L, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017;403:21–7. https://doi.org/10.1016/j.canlet.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  26. Bogowicz M, Riesterer O, Ikenberg K, Stieb S, Moch H, Studer G, et al. Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2017;99:921–8. https://doi.org/10.1016/j.ijrobp.2017.06.002.

    Article  PubMed  Google Scholar 

  27. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281:947–57. https://doi.org/10.1148/radiol.2016152234.

    Article  PubMed  Google Scholar 

  28. Berland LL, Silverman SG, Gore RM, Mayo-Smith WW, Megibow AJ, Yee J, et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7:754–73. https://doi.org/10.1016/j.jacr.2010.06.013.

    Article  PubMed  Google Scholar 

  29. Mendiratta-Lala M, Avram A, Turcu AF, Dunnick NR. Adrenal Imaging. Endocrinol Metab Clin N Am. 2017;46:741–59. https://doi.org/10.1016/j.ecl.2017.04.009.

    Article  Google Scholar 

  30. Boland GW, Blake MA, Hahn PF, Mayo-Smith WW. Incidental adrenal lesions: principles, techniques, and algorithms for imaging characterization. Radiology. 2008;249:756–75. https://doi.org/10.1148/radiol.2493070976.

    Article  PubMed  Google Scholar 

  31. Gufler H, Eichner G, Grossmann A, Krentz H, Schulze CG, Sauer S, et al. Differentiation of adrenal adenomas from metastases with unenhanced computed tomography. J Comput Assist Tomogr. 2004;28:818–22.

    Article  Google Scholar 

  32. Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol. 2018;28:1625–33. https://doi.org/10.1007/s00330-017-5118-z.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Taihao Jin (Ph.D), from the Department of Diagnostic Radiology (City of Hope National Medical Center) for helpful discussion and assistance in preparing the manuscript. Editing assistance was provided by Nancy Linford, PhD.

Funding

This study is partially supported in part by China Postdoctoral Science Foundation funded project (2018M632997) and The Postdoctoral Science Foundation of Central South University (No. 185705).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Yi or Youming Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Electronic supplementary material

ESM 1

(DOCX 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Guan, X., Zhang, Y. et al. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma: a predictive, preventive and personalized medical approach in adrenal incidentalomas. EPMA Journal 9, 421–429 (2018). https://doi.org/10.1007/s13167-018-0149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-018-0149-3

Keywords

Navigation