Morphological and chemical analysis of peach fruits in three different farming systems

Abstract

This study aimed to access the commercial and the sensorial quality of the “flat peaches” variety grown in three farming systems: conventional and organic (“with compost” and “without compost”) in Gafsa, located at the south-west of Tunisia. Tests were performed on 18 and 22 ripe fruits randomly harvested at full maturity stage based on morphological and chemical traits according to peach descriptors and to some previous fruit analysis. Highly significant differences were noted between the three farming systems for some peach morphological characters. According to the peach descriptors, the organic peaches (“with compost” and “without compost”) had a good attractiveness (7) and very firm flesh (9) compared to the conventional ones (3 and 5, respectively). The highest mean fruit weight (89.3 g) was obtained in organic cropping system “with compost.” A significant difference between cropping systems was noted for the majority of chemical parameters. The juice percentage was higher in organic fruits (≥ 55.0%) than in conventional ones (> 43%). The soluble solids content and the total sugars were the highest in organic peaches “without compost” (13.5 and 11.8% Brix, respectively). In organic peaches “with compost,” the titrable acidity and the total acidity were high (73.5 meq/l of juice and 0.4%, respectively) and the ripening and the sweetness indexes were low (0.1 and 1.6, respectively). The increases in the titrable and total acidities were concomitant with a decrease in juice pH values. The titrable acidity was significantly and negatively correlated with the ripening index (r = − 1.0*). This latter was also significantly and positively linked to the sweetness index (r = 1.0*). The organically grown peaches exhibited the highest quality traits (attractive, firm, big, juicy, etc.). Peaches were acid when grown organically system “with compost” and sweet “without compost.” These results may incite more the Tunisian farmers to produce organic peach and to develop more this agricultural system in Tunisia.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

FAtt:

Fruit attractiveness

Fsh:

Fruit shape

MTi:

Mucron tip at pistil end

ShPis:

Shape of pistil end

FSym:

Fruit symmetry

FPSut:

Fruit prominence of suture

DSc:

Depth of stalk cavity

WiSc:

Width of stalk cavity

FPub:

Fruit pubescence

FPubden:

Fruit pubescence density

FGlo:

Fruit glossiness

References

  1. Barrett JS, Gearry RB, Muir JG, Irving PM, Rose R, Rosella O (2010) Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment Pharm Therap 31:874–882

    CAS  Google Scholar 

  2. Bassi D, Selli R (1990) Evaluation of fruit quality in peach and apricot. Adv Hortic Sci 4:107–112

    Google Scholar 

  3. Benaziza A, Lebid H (2007) Caractérisation de quelques variétés d’abricotier (Prunus armeniaca L.) dans la région de m’chouneche wilaya de biskra. Courrier du Savoir 80:101–110

    Google Scholar 

  4. Byrne DH (2002) Peach breeding trends: a worldwide perspective. Acta Hortic 592:49–59

    Google Scholar 

  5. Callahan AM (2003) Breeding for fruit quality. Acta Hortic 622:295–302

    CAS  Google Scholar 

  6. Cantín CM, Gogorcena Y, Moreno MA (2009) Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric 89:1909–1917

    Google Scholar 

  7. Carbonaro M, Bergamo P, Mattera M, Nicoli S, Cappelloni M (2002) Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J Agric Food Chem 50:5458–5462

    PubMed  CAS  Google Scholar 

  8. Chahidi B, El-Otmani M, Luro F, Sairi I, Tijane M (2008) Changes of fruit quality traits in 7 clementine selections during maturation. Electronic J Environ Agric Food Chem 7(1):2565–2577

    Google Scholar 

  9. Chitarra IMF, Chitarra AB (2005) Pos-colheita de frutas e hortaliças: Fisiologia e Manuseio, 2nd edn. UFLA, Lavras

    Google Scholar 

  10. Cirilli M, Bassi D, Ciacciulli A (2016) Sugars in peach fruit: a breeding perspective. Hortic Res 3:15067. https://doi.org/10.1038/hortres.2015.67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. CPVO-TP (2012) Protocol for distinctness, uniformity and stability tests. Peach/Nectarine. CPVO-TP/053/2 39 pp

  12. Delgado C, Crisosto GM, Heymann H, Crisosto CH (2013) Determining the primary drivers of liking to predict consumers’ acceptance of fresh nectarines and peaches. J Food Sci 78:605–614

    Google Scholar 

  13. Delwiche MJ, Tang S, Mehlschau JJ (1989) An impact force response fruit firmness sorter. Trans ASAE 32(1):321–326

    Google Scholar 

  14. DGAB-Ministry of Agriculture Tunisia (Direction Générale de l’Agriculture Biologique) (2012) Données relatives au suivi de la campagne agricole biologique 2012. Les arbres à noyau (pêcher biologique)

  15. DGPA-Ministry of Agriculture Tunisia (Direction Générale de la Production Agricole) (2016) Données relatives au suivi de la campagne agricole 2016. Les arbres à noyau (pêcher et nectarines)

  16. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach [P. persica (L.) Batsch]. Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  17. Dostal HC (1963) Influence of nutritional environment on nonvolatile organic acid composition of post-harvest apple fruits. Ph.D. Thesis, Michigan State University, East Lansing, Michigan

  18. ECPGR (2013) ECPGR priority descriptors for peach [Prunus persica (L.) Batsch]. In: Giovannini D, Liverani A, Bassi D, Lateur M (eds) 30pp

  19. El-Otmani M, Arpaia ML, Coggins CW Jr (1987) Developmental and topophysical effects on the n-alkanes of Valencia orange fruit epicuticular wax. J Agric Food Chem 35:42–46

    CAS  Google Scholar 

  20. Esti M, Messia MC, Sinesio F, Nicotra A, Conte L, Notte EL, Palleschi G (1997) Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chem 60:659–666

    CAS  Google Scholar 

  21. Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349

    Google Scholar 

  22. Frett T, Gasic K, Clark J, Byrne D (2012) Standardized phenotyping for fruit quality in peach (Prunus persica (L.) Batsh). J. Am. Soc. Hortic. Sci. 66(4):214–219

    Google Scholar 

  23. Génard M, Lescourret F, Gómez L, Habib R (2003) Changes in fruit sugar concentrations in response to assimilate supply, metablosim and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiol 23:373–385

    PubMed  Google Scholar 

  24. Hegedús A, Engel R, Abrankó L, Balogh E, Blázovics A, Hermán R, Halász J, Ercisli S, Pedryc A, Stefanovits-Banyai E (2010) Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: variations from genotypes, years, and analytical methods. J Food Sci 75:C722–C730

    PubMed  Google Scholar 

  25. IFOAM/FiBL (2017) The world of Organic Agriculture. February 9, 17 pp (www.fibl.org/fileadmin/documents/en/news/2017/mr-world-organic-agriculture-2017-english.pdf) (accessed 21 0ctober 2017)

  26. IPGRI (1984) Peach descriptors. Descriptor list for peach (Prunus persica). In: Bellini E, Watkins R, Pomarici E (eds) IBPGR Secretariat, Rome. CEC Secretariat, Brussels. 34 pp

  27. Johnson RE, Jackson PC, Adams HR (1963) Changes in citrate and malate concentration of barley roots during salt absorption. Plant Physiol 38:xxv

    Google Scholar 

  28. Kader AA (1999) Fruit maturity, ripening and quality relationships. Acta Hortic 485:203–208

    Google Scholar 

  29. Kervella J, Pfeiffer F, Pascal T (1992) Perception et appréciation des pêches douces par les consommateurs. Agro-Industrie et Méthodes Statistiques, Montpellier 30 novembre et 1er décembre. 108–111

  30. Koneru VC (2013) Peach fruit quality analysis in relation to organic and conventional cultivation techniques. Master of Science in Nutrition, Dietetics and Food Sciences. Utah State University Logan, Utah. 67pp

  31. Kramer A (1965) Evaluation of quality of fruits and vegetables. In: Irving GW Jr, Hoover SR (eds) Food quality. AAAS, Washington, DC, pp 9–18

    Google Scholar 

  32. Kroger M, Meister K, Kava R (2006) Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf 5:35–47

    CAS  Google Scholar 

  33. Kulp K, Lorenz K, Stone M (1991) Functionality of carbohydrate ingredients in bakery products. Food Technol 45:136–142

    CAS  Google Scholar 

  34. LaRue JH, Johnson RS (1989) Extension U of C (system) C. Peaches, plums, and nectarines: growing and handling for fresh market. UCANR Publications 581-584

  35. Leccese A, Bureau S, Reich M, Renard MGCC, Audergon JM, Mennone C, Bartolini S, Viti R (2010) Pomological and neutraceutical properties in apricot fruit: cultivation systems and cold storage fruit management. Plant Foods Hum Nutr 65:112–120. https://doi.org/10.1007/s11130-010-0158-4

    Article  PubMed  CAS  Google Scholar 

  36. Lester GE (2006) Organic versus conventionally grown produce: quality differences, and guidelines for comparison studies. HortScience 41(2):296–300

    Google Scholar 

  37. Lima JSB, Alvarenga AA, Malta MR, Gebert D, Lima EB (2013) Chemical evaluation and effect of bagging new peach varieties introduced in southern Minas Gerias-Brazil. Food Sci Technol (Campinas) 33(3):434–440

    Google Scholar 

  38. Lopez G, Behboudian MH, Echeverria G, Mata M, Girona J, Marsal J (2011) Instrumental and sensory evaluation of fruit quality for ‘Ryan’s Sun’ peach grown under deficit irrigation. Horttechnology 21:712–719

    Google Scholar 

  39. Lopresti J, Goodwin I, McGlasson B, Holford P, Golding J (2014) Variability in size and soluble solids concentration in peaches and nectarines. In: Janick J (ed) Hortic Rev., vol 42, 1st edn. Wiley-Blackwell, Hoboken, pp 253–311

    Google Scholar 

  40. Masia A, Zanchin A, Rascio N, Ramina A (1992) Some biochemical and ultrastructural aspects of peach fruit development. J Am Soc Hortic Sci 117:808–815

    CAS  Google Scholar 

  41. Meredith FI, Roberston JA, Horvat RJ (1989) Changes in physical and chemical parameters associated with quality and postharvest ripening of ‘Harvester’ peaches. J Agric Food Chem 37:1210–1214

    CAS  Google Scholar 

  42. Milatović D, Nikolić D, Durović D (2010) Variability, heritability and correlations of some factors affecting productivity in peach. Hortic Sci 37:79–87

    Google Scholar 

  43. Milošević T, Milošević N, Glišić I, Mladenović J (2012) Fruit quality, phenolics content and antioxidant capacity of new apricot cultivars from Serbia. Acta Sci Pol-Hortorum Cultus 11(5):3–15

    Google Scholar 

  44. Moriguchi T, Ishizawa Y, Sanda T (1990) Differences in sugar composition in Prunus persica fruit and the classification by the principal component analysis. J Jpn Soc Hortic Sci 59:307–312

    CAS  Google Scholar 

  45. Mouria B, Ouazzani-Touhami A, Douira A (2010) Valorisation agronomique du compost et de ses extraits sur la culture de la tomate. Rev Ivoir Sci Technol 16:165–190

    Google Scholar 

  46. Mrabet L, Belghyti D, Loukili A, Attarassi B (2011) Etude de l’effet du compost des déchets ménagers sur l’amélioration du rendement de Maïs et de la Laitue. Afrique Science 07(2):74–84

    Google Scholar 

  47. Mulaji KC (2011) Utilisation des composts de biodéchets ménagers pour l’amélioration de la fertilité des sols acides de la province de Kinshasa (République Démocratique du Congo). Thèse de doctorat, université de Liège- Gembloux Agro-Biotech, 220p

  48. Müller L, Gnoyke S, Popken AM, Böhm V (2010) Antioxidant capacity and related parameters of different fruit formulations. Food Sci Technol 43:992–999

    Google Scholar 

  49. Orazem P, Stampar F, Hudina M (2011) Quality analysis of Redhaven peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chem 124:1691–1698

    CAS  Google Scholar 

  50. Ortiz A, Lara I, Graell J, Lopez ML, Echeverria G (2008) Sensory acceptance of CA-stored peach fruit. Relationship to instrumental quality parameters. Acta Hortic 796:225–230

    CAS  Google Scholar 

  51. Peynaud E, Maurie A (1956) Nouvelles recherches sur la maturation du raisin dans le Bordelais, années 1952, 1953 et 1954. Ann Technol Agric 5:11–139

    Google Scholar 

  52. Predieri S, Ragazzini P, Rondelli R (2006) Sensory evaluation and peach fruit quality. Acta Hortic 713:429–434

    Google Scholar 

  53. Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agric Food Chem 61:6344–6357

    PubMed  CAS  Google Scholar 

  54. Robertson JA, Meredith FI, Scorza R (1988) Characteristics of fruit from high-and low quality peach cultivars. Hortscience 23:1032–1034

    Google Scholar 

  55. Robertson JA, Horvat RJ, Lyon BG, Meredith FI, Senter SD, Okie WR (1990) Comparison of quality characteristics of selected yellow-and white-fleshed peach cultivars. J Food Sci 55:1308–1311

    Google Scholar 

  56. Ruck JA (1963) Chemical methods for analysis of fruit and vegetable products. Canadian Department of Agriculture, Publication 1154. 47 p

  57. Somers, TC (1977) A connection between the potassium levels in the harvest and relative quality in Australian red wines. OIV Int. Symp. Quality of the vintage, Cape town, South Africa

  58. Souty M, André P (1975) Composition biochimique et qualité des pêches. Ann Technol Agric 24:217–236

    CAS  Google Scholar 

  59. Tsantili E, Shin Y, Nock JF, Watkins CB (2010) Antioxidant concentrations during chilling injury development in peaches. Postharvest Biol Technol 57:27–34

    CAS  Google Scholar 

  60. UPOV-TG (2014) Principes directeurs pour la conduite de l’examen, de la distinction, de l’homogénéité et de la stabilité. Pêcher [Prunus persica (L.) Batsch]. TG/53/7 Rev 50 pp

  61. Vidaud J, Jacoutet I, Thivend, J (1987) Le pêcher : références et techniques, Ctifl 453pp

  62. Wills RHB, Scriven FM, Greefield H (1983) Nutrient composition of stone fruit (Prunus spp.) cultivars: apricot, cherry, nectarine, peach and plum. J Sci Food Agric 34:1383–1389

    PubMed  CAS  Google Scholar 

  63. Woese K, Lange D, Boess C, Bogl KW (1997) A comparison of organically and conventionally grown foods—results of a review of the relevant literature. J Sci Food Agric 74:281–293

    CAS  Google Scholar 

  64. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008). Cellular antioxidant activity of common fruits. J. Agric. Food Chem.56:8418–8426

    PubMed  CAS  Google Scholar 

  65. Wu B, Quilot B, Kervella J, Génard M, Li S (2003) Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the principle component analysis. Euphytica 132:375–384

    CAS  Google Scholar 

  66. Zanchin A, Bonghi C, Casadoro G, Ramina A, Rascio N (1994) Cell enlargement and cell separation during peach fruit development. Int J Plant Sci 155:49–56

    Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Wadhah Guenimi for his help in the various analyses. Also, they acknowledge Dr. Chokri Bayoudh and Dr. Mejda Daami, from the Regional Research Center on Horticulture and Organic Agriculture-Chott-Mariem, for manuscript revision; Dr. Ikbal Chaieb, from the Regional Research Center on Horticulture and Organic Agriculture-Chott-Mariem, for his kind help in the statistical analysis; and the anonymous reviewers for valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amel Lachkar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lachkar, A., Attia, I.B. & Amor, Y. Morphological and chemical analysis of peach fruits in three different farming systems. Org. Agr. 10, 49–61 (2020). https://doi.org/10.1007/s13165-019-00250-w

Download citation

Keywords

  • Commercial and sensorial quality
  • Compost fruit analysis
  • Organic and conventional system
  • Peach