Morphological and chemical analysis of peach fruits in three different farming systems

  • Amel LachkarEmail author
  • Imed Ben Attia
  • Youssef Amor


This study aimed to access the commercial and the sensorial quality of the “flat peaches” variety grown in three farming systems: conventional and organic (“with compost” and “without compost”) in Gafsa, located at the south-west of Tunisia. Tests were performed on 18 and 22 ripe fruits randomly harvested at full maturity stage based on morphological and chemical traits according to peach descriptors and to some previous fruit analysis. Highly significant differences were noted between the three farming systems for some peach morphological characters. According to the peach descriptors, the organic peaches (“with compost” and “without compost”) had a good attractiveness (7) and very firm flesh (9) compared to the conventional ones (3 and 5, respectively). The highest mean fruit weight (89.3 g) was obtained in organic cropping system “with compost.” A significant difference between cropping systems was noted for the majority of chemical parameters. The juice percentage was higher in organic fruits (≥ 55.0%) than in conventional ones (> 43%). The soluble solids content and the total sugars were the highest in organic peaches “without compost” (13.5 and 11.8% Brix, respectively). In organic peaches “with compost,” the titrable acidity and the total acidity were high (73.5 meq/l of juice and 0.4%, respectively) and the ripening and the sweetness indexes were low (0.1 and 1.6, respectively). The increases in the titrable and total acidities were concomitant with a decrease in juice pH values. The titrable acidity was significantly and negatively correlated with the ripening index (r = − 1.0*). This latter was also significantly and positively linked to the sweetness index (r = 1.0*). The organically grown peaches exhibited the highest quality traits (attractive, firm, big, juicy, etc.). Peaches were acid when grown organically system “with compost” and sweet “without compost.” These results may incite more the Tunisian farmers to produce organic peach and to develop more this agricultural system in Tunisia.


Commercial and sensorial quality Compost fruit analysis Organic and conventional system Peach 



Fruit attractiveness


Fruit shape


Mucron tip at pistil end


Shape of pistil end


Fruit symmetry


Fruit prominence of suture


Depth of stalk cavity


Width of stalk cavity


Fruit pubescence


Fruit pubescence density


Fruit glossiness



The authors thank Mr. Wadhah Guenimi for his help in the various analyses. Also, they acknowledge Dr. Chokri Bayoudh and Dr. Mejda Daami, from the Regional Research Center on Horticulture and Organic Agriculture-Chott-Mariem, for manuscript revision; Dr. Ikbal Chaieb, from the Regional Research Center on Horticulture and Organic Agriculture-Chott-Mariem, for his kind help in the statistical analysis; and the anonymous reviewers for valuable comments and suggestions.


  1. Barrett JS, Gearry RB, Muir JG, Irving PM, Rose R, Rosella O (2010) Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment Pharm Therap 31:874–882Google Scholar
  2. Bassi D, Selli R (1990) Evaluation of fruit quality in peach and apricot. Adv Hortic Sci 4:107–112CrossRefGoogle Scholar
  3. Benaziza A, Lebid H (2007) Caractérisation de quelques variétés d’abricotier (Prunus armeniaca L.) dans la région de m’chouneche wilaya de biskra. Courrier du Savoir 80:101–110Google Scholar
  4. Byrne DH (2002) Peach breeding trends: a worldwide perspective. Acta Hortic 592:49–59CrossRefGoogle Scholar
  5. Callahan AM (2003) Breeding for fruit quality. Acta Hortic 622:295–302CrossRefGoogle Scholar
  6. Cantín CM, Gogorcena Y, Moreno MA (2009) Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric 89:1909–1917CrossRefGoogle Scholar
  7. Carbonaro M, Bergamo P, Mattera M, Nicoli S, Cappelloni M (2002) Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J Agric Food Chem 50:5458–5462CrossRefGoogle Scholar
  8. Chahidi B, El-Otmani M, Luro F, Sairi I, Tijane M (2008) Changes of fruit quality traits in 7 clementine selections during maturation. Electronic J Environ Agric Food Chem 7(1):2565–2577Google Scholar
  9. Chitarra IMF, Chitarra AB (2005) Pos-colheita de frutas e hortaliças: Fisiologia e Manuseio, 2nd edn. UFLA, LavrasGoogle Scholar
  10. Cirilli M, Bassi D, Ciacciulli A (2016) Sugars in peach fruit: a breeding perspective. Hortic Res 3:15067. CrossRefGoogle Scholar
  11. CPVO-TP (2012) Protocol for distinctness, uniformity and stability tests. Peach/Nectarine. CPVO-TP/053/2 39 ppGoogle Scholar
  12. Delgado C, Crisosto GM, Heymann H, Crisosto CH (2013) Determining the primary drivers of liking to predict consumers’ acceptance of fresh nectarines and peaches. J Food Sci 78:605–614CrossRefGoogle Scholar
  13. Delwiche MJ, Tang S, Mehlschau JJ (1989) An impact force response fruit firmness sorter. Trans ASAE 32(1):321–326CrossRefGoogle Scholar
  14. DGAB-Ministry of Agriculture Tunisia (Direction Générale de l’Agriculture Biologique) (2012) Données relatives au suivi de la campagne agricole biologique 2012. Les arbres à noyau (pêcher biologique)Google Scholar
  15. DGPA-Ministry of Agriculture Tunisia (Direction Générale de la Production Agricole) (2016) Données relatives au suivi de la campagne agricole 2016. Les arbres à noyau (pêcher et nectarines)Google Scholar
  16. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach [P. persica (L.) Batsch]. Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  17. Dostal HC (1963) Influence of nutritional environment on nonvolatile organic acid composition of post-harvest apple fruits. Ph.D. Thesis, Michigan State University, East Lansing, MichiganGoogle Scholar
  18. ECPGR (2013) ECPGR priority descriptors for peach [Prunus persica (L.) Batsch]. In: Giovannini D, Liverani A, Bassi D, Lateur M (eds) 30ppGoogle Scholar
  19. El-Otmani M, Arpaia ML, Coggins CW Jr (1987) Developmental and topophysical effects on the n-alkanes of Valencia orange fruit epicuticular wax. J Agric Food Chem 35:42–46CrossRefGoogle Scholar
  20. Esti M, Messia MC, Sinesio F, Nicotra A, Conte L, Notte EL, Palleschi G (1997) Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chem 60:659–666CrossRefGoogle Scholar
  21. Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349CrossRefGoogle Scholar
  22. Frett T, Gasic K, Clark J, Byrne D (2012) Standardized phenotyping for fruit quality in peach (Prunus persica (L.) Batsh). J. Am. Soc. Hortic. Sci. 66(4):214–219Google Scholar
  23. Génard M, Lescourret F, Gómez L, Habib R (2003) Changes in fruit sugar concentrations in response to assimilate supply, metablosim and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiol 23:373–385CrossRefGoogle Scholar
  24. Hegedús A, Engel R, Abrankó L, Balogh E, Blázovics A, Hermán R, Halász J, Ercisli S, Pedryc A, Stefanovits-Banyai E (2010) Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: variations from genotypes, years, and analytical methods. J Food Sci 75:C722–C730CrossRefGoogle Scholar
  25. IFOAM/FiBL (2017) The world of Organic Agriculture. February 9, 17 pp ( (accessed 21 0ctober 2017)
  26. IPGRI (1984) Peach descriptors. Descriptor list for peach (Prunus persica). In: Bellini E, Watkins R, Pomarici E (eds) IBPGR Secretariat, Rome. CEC Secretariat, Brussels. 34 ppGoogle Scholar
  27. Johnson RE, Jackson PC, Adams HR (1963) Changes in citrate and malate concentration of barley roots during salt absorption. Plant Physiol 38:xxvGoogle Scholar
  28. Kader AA (1999) Fruit maturity, ripening and quality relationships. Acta Hortic 485:203–208CrossRefGoogle Scholar
  29. Kervella J, Pfeiffer F, Pascal T (1992) Perception et appréciation des pêches douces par les consommateurs. Agro-Industrie et Méthodes Statistiques, Montpellier 30 novembre et 1er décembre. 108–111Google Scholar
  30. Koneru VC (2013) Peach fruit quality analysis in relation to organic and conventional cultivation techniques. Master of Science in Nutrition, Dietetics and Food Sciences. Utah State University Logan, Utah. 67ppGoogle Scholar
  31. Kramer A (1965) Evaluation of quality of fruits and vegetables. In: Irving GW Jr, Hoover SR (eds) Food quality. AAAS, Washington, DC, pp 9–18Google Scholar
  32. Kroger M, Meister K, Kava R (2006) Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf 5:35–47CrossRefGoogle Scholar
  33. Kulp K, Lorenz K, Stone M (1991) Functionality of carbohydrate ingredients in bakery products. Food Technol 45:136–142Google Scholar
  34. LaRue JH, Johnson RS (1989) Extension U of C (system) C. Peaches, plums, and nectarines: growing and handling for fresh market. UCANR Publications 581-584Google Scholar
  35. Leccese A, Bureau S, Reich M, Renard MGCC, Audergon JM, Mennone C, Bartolini S, Viti R (2010) Pomological and neutraceutical properties in apricot fruit: cultivation systems and cold storage fruit management. Plant Foods Hum Nutr 65:112–120. CrossRefGoogle Scholar
  36. Lester GE (2006) Organic versus conventionally grown produce: quality differences, and guidelines for comparison studies. HortScience 41(2):296–300CrossRefGoogle Scholar
  37. Lima JSB, Alvarenga AA, Malta MR, Gebert D, Lima EB (2013) Chemical evaluation and effect of bagging new peach varieties introduced in southern Minas Gerias-Brazil. Food Sci Technol (Campinas) 33(3):434–440CrossRefGoogle Scholar
  38. Lopez G, Behboudian MH, Echeverria G, Mata M, Girona J, Marsal J (2011) Instrumental and sensory evaluation of fruit quality for ‘Ryan’s Sun’ peach grown under deficit irrigation. Horttechnology 21:712–719CrossRefGoogle Scholar
  39. Lopresti J, Goodwin I, McGlasson B, Holford P, Golding J (2014) Variability in size and soluble solids concentration in peaches and nectarines. In: Janick J (ed) Hortic Rev., vol 42, 1st edn. Wiley-Blackwell, Hoboken, pp 253–311Google Scholar
  40. Masia A, Zanchin A, Rascio N, Ramina A (1992) Some biochemical and ultrastructural aspects of peach fruit development. J Am Soc Hortic Sci 117:808–815CrossRefGoogle Scholar
  41. Meredith FI, Roberston JA, Horvat RJ (1989) Changes in physical and chemical parameters associated with quality and postharvest ripening of ‘Harvester’ peaches. J Agric Food Chem 37:1210–1214CrossRefGoogle Scholar
  42. Milatović D, Nikolić D, Durović D (2010) Variability, heritability and correlations of some factors affecting productivity in peach. Hortic Sci 37:79–87CrossRefGoogle Scholar
  43. Milošević T, Milošević N, Glišić I, Mladenović J (2012) Fruit quality, phenolics content and antioxidant capacity of new apricot cultivars from Serbia. Acta Sci Pol-Hortorum Cultus 11(5):3–15Google Scholar
  44. Moriguchi T, Ishizawa Y, Sanda T (1990) Differences in sugar composition in Prunus persica fruit and the classification by the principal component analysis. J Jpn Soc Hortic Sci 59:307–312CrossRefGoogle Scholar
  45. Mouria B, Ouazzani-Touhami A, Douira A (2010) Valorisation agronomique du compost et de ses extraits sur la culture de la tomate. Rev Ivoir Sci Technol 16:165–190Google Scholar
  46. Mrabet L, Belghyti D, Loukili A, Attarassi B (2011) Etude de l’effet du compost des déchets ménagers sur l’amélioration du rendement de Maïs et de la Laitue. Afrique Science 07(2):74–84Google Scholar
  47. Mulaji KC (2011) Utilisation des composts de biodéchets ménagers pour l’amélioration de la fertilité des sols acides de la province de Kinshasa (République Démocratique du Congo). Thèse de doctorat, université de Liège- Gembloux Agro-Biotech, 220pGoogle Scholar
  48. Müller L, Gnoyke S, Popken AM, Böhm V (2010) Antioxidant capacity and related parameters of different fruit formulations. Food Sci Technol 43:992–999Google Scholar
  49. Orazem P, Stampar F, Hudina M (2011) Quality analysis of Redhaven peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chem 124:1691–1698CrossRefGoogle Scholar
  50. Ortiz A, Lara I, Graell J, Lopez ML, Echeverria G (2008) Sensory acceptance of CA-stored peach fruit. Relationship to instrumental quality parameters. Acta Hortic 796:225–230CrossRefGoogle Scholar
  51. Peynaud E, Maurie A (1956) Nouvelles recherches sur la maturation du raisin dans le Bordelais, années 1952, 1953 et 1954. Ann Technol Agric 5:11–139Google Scholar
  52. Predieri S, Ragazzini P, Rondelli R (2006) Sensory evaluation and peach fruit quality. Acta Hortic 713:429–434CrossRefGoogle Scholar
  53. Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agric Food Chem 61:6344–6357CrossRefGoogle Scholar
  54. Robertson JA, Meredith FI, Scorza R (1988) Characteristics of fruit from high-and low quality peach cultivars. Hortscience 23:1032–1034Google Scholar
  55. Robertson JA, Horvat RJ, Lyon BG, Meredith FI, Senter SD, Okie WR (1990) Comparison of quality characteristics of selected yellow-and white-fleshed peach cultivars. J Food Sci 55:1308–1311CrossRefGoogle Scholar
  56. Ruck JA (1963) Chemical methods for analysis of fruit and vegetable products. Canadian Department of Agriculture, Publication 1154. 47 pGoogle Scholar
  57. Somers, TC (1977) A connection between the potassium levels in the harvest and relative quality in Australian red wines. OIV Int. Symp. Quality of the vintage, Cape town, South AfricaGoogle Scholar
  58. Souty M, André P (1975) Composition biochimique et qualité des pêches. Ann Technol Agric 24:217–236Google Scholar
  59. Tsantili E, Shin Y, Nock JF, Watkins CB (2010) Antioxidant concentrations during chilling injury development in peaches. Postharvest Biol Technol 57:27–34CrossRefGoogle Scholar
  60. UPOV-TG (2014) Principes directeurs pour la conduite de l’examen, de la distinction, de l’homogénéité et de la stabilité. Pêcher [Prunus persica (L.) Batsch]. TG/53/7 Rev 50 ppGoogle Scholar
  61. Vidaud J, Jacoutet I, Thivend, J (1987) Le pêcher : références et techniques, Ctifl 453ppGoogle Scholar
  62. Wills RHB, Scriven FM, Greefield H (1983) Nutrient composition of stone fruit (Prunus spp.) cultivars: apricot, cherry, nectarine, peach and plum. J Sci Food Agric 34:1383–1389CrossRefGoogle Scholar
  63. Woese K, Lange D, Boess C, Bogl KW (1997) A comparison of organically and conventionally grown foods—results of a review of the relevant literature. J Sci Food Agric 74:281–293CrossRefGoogle Scholar
  64. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008). Cellular antioxidant activity of common fruits. J. Agric. Food Chem.56:8418–8426Google Scholar
  65. Wu B, Quilot B, Kervella J, Génard M, Li S (2003) Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the principle component analysis. Euphytica 132:375–384CrossRefGoogle Scholar
  66. Zanchin A, Bonghi C, Casadoro G, Ramina A, Rascio N (1994) Cell enlargement and cell separation during peach fruit development. Int J Plant Sci 155:49–56CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Regional Research Center on Horticulture and Organic Agriculture, IRESAUniversity of SousseSousseTunisia
  2. 2.Technical Center of Organic AgricultureSousseTunisia

Personalised recommendations