Organic Agriculture

, Volume 7, Issue 3, pp 169–197 | Cite as

Organic Agriculture 3.0 is innovation with research

  • Gerold Rahmann
  • M. Reza Ardakani
  • Paolo Bàrberi
  • Herwart Boehm
  • Stefano Canali
  • Mahesh Chander
  • Wahyudi David
  • Lucas Dengel
  • Jan Willem Erisman
  • Ana C. Galvis-Martinez
  • Ulrich Hamm
  • Johannes Kahl
  • Ulrich Köpke
  • Stefan Kühne
  • S. B. Lee
  • Anne-Kristin Løes
  • Jann Hendrik Moos
  • Daniel Neuhof
  • Jaakko Tapani Nuutila
  • Victor Olowe
  • Rainer Oppermann
  • Ewa Rembiałkowska
  • Jim Riddle
  • Ilse A. Rasmussen
  • Jessica Shade
  • Sang Mok Sohn
  • Mekuria Tadesse
  • Sonam Tashi
  • Alan Thatcher
  • Nazim Uddin
  • Peter von Fragstein und Niemsdorff
  • Atle Wibe
  • Maria Wivstad
  • Wu Wenliang
  • Raffaele Zanoli
Article

Abstract

Organic agriculture can and should play an important role in solving future challenges in producing food. The low level of external inputs combined with knowledge on sustainablity minimizes environmental contamination and can help to produce more food for more people without negatively impacting our environment. Organic agriculture not only includes farming as a production practice but it also includes processing, trade and consumption. Nevertheless, Organic agriculture must always evolve to overcome emerging challenges. Science-based knowledge attained through dedicated research is required to strengthen organic food and farming as a means to solve future challenges. In 2010, a global discussion about Organic 3.0 was initiated to address current problems our agri-food systems are facing. Many scientifically and practically proven results are already available to make organic agriculture a strong tool to solve some of these challenges. However, the organic agri-food system has to be developed further to fulfill its potential. The contribution of organic agriculture to help solve current problems linked to food security and environmental quality was discussed during the International Society of Organic Agricultural Research (ISOFAR) Symposium “Organic 3.0 is Innovation with Research”, held September 20–22, 2015, in conjunction with the first ISOFAR International Organic Expo, in Goesan County, Republic of Korea. Some of the world’s most active scientists in organic agriculture attended the symposium. This paper is a result of their discussions and aims to give an overview of research conducted and required to strengthen organic agriculture in its ambitions to overcome agronomic challenges, contribute to food security and protect our common environment.

Keywords

Organic 3.0 Agri-ecology ISOFAR Ecological intensification Organic agriculture Organic food systems Organic farming research Global food challenges 

References

  1. Aertsens J (2011) Organic food as an emerging market: personal determinants of consumption, Supply governance and retail strategies, Ghent University. http://hdl.handle.net/1854/LU-1258273. (Accessed 16 Apr. 2016).
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12–03. Food and Agriculture Organization of the United Nations (FAO), Rome, ItalyGoogle Scholar
  3. Altieri MA (2004) Agroecology versus ecoagriculture: balancing food production and biodiversity conservation in the midst of social inequity. CEESP Occasional Papers 3:1–29Google Scholar
  4. Arbenz M, Gould D and Stopes C (2015) Organic 3.0. for truly sustainable farming and consumption. Based on think tanking by SOAAN & IFOAM—Organics International and launched at the ISOFAR International Organic EXPO 2015, Goesan County, South Korea, http://www.ifoam.bio/en/news/2016/01/21/join-organic-30-discussion-affiliates-and-stakeholder-consultation-20152016. (Accessed 12 Apr 2016)
  5. Auerbach R, Rundgren G, Scialabba N (2013) Organic agriculture: African experiences in resilience and sustainability. FAO, Rome, p. 210Google Scholar
  6. Baker BP, Benbrook CM, Groth E, Benbrook LK (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Addit Contam 19(5):427–446PubMedCrossRefGoogle Scholar
  7. Balfour E (1943) The living soil. Faber and Faber. UK, LondonGoogle Scholar
  8. Barabanova Y, Zanoli R, Schlüter M, Stopes C (2015) Transforming food & farming. An organic vision for Europe in 2030. IFOAM-EU, Bruxels, Belgium, 32ppGoogle Scholar
  9. Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Tahvonen R, Janovska D, Niggli U, Nicot P, Leifert C (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112:794–811PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bàrberi P (2006) Special topic 4. Tillage: how bad is it in organic agriculture? In: Kristiansen P, Taji A, Collingwood RJ (eds) Organic agriculture. A global perspective. CSIRO Publishing/CABI Publishing, (AU)/Wallingford (UK), pp. 295–303Google Scholar
  11. Bàrberi P (2015) Functional biodiversity in organic systems: the way forward? Sustainable Agriculture Research 4:26–31CrossRefGoogle Scholar
  12. Bàrberi P, Aendekerk R, Antichi D, Armengot L, Berner A, Bigongiali F, Blanco-Moreno JM, Carlesi S, Celette F, Chamorro L, Crowley O, Döring T, Grosse M, Haase T, Heß J, Huiting H, José-María L, Klaedtke S, Kranzler A, Luik A, Peigné J, Sukkel W, Surböck A, Talgre L and Sans FX (2014) Reduced tillage and cover crops in organic arable systems preserve weed diversity without jeopardising crop yield. In: Rahmann and Aksoy (Eds.) Proceedings 18th IFOAM Organic World Congress, Istanbul. 765–768Google Scholar
  13. Bàrberi P, Burgio G, Dinelli G, Moonen AC, Otto S, Vazzana C, Zanin G (2010) Functional biodiversity in the agricultural landscape: relationships between weeds and arthropod fauna. Weed Res 50:388–401CrossRefGoogle Scholar
  14. Beijerinck MW (1901) Über oligonitrophile Mikroben. In: Centralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung II. Band 7, 1901, 561–582Google Scholar
  15. Bellarby J, Foereid B, Hastings A and Smith P (2008) Cool Farming: Climate impacts of agriculture and mitigation potential Amsterdam, Netherlands, 44 pp.Google Scholar
  16. Benbrook C (2015) Embracing value-added, evidence-based diversity across the food industry is good for business. Organic Agriculture Research Symposium, February 25–26, 2015, La Crosse, Winconsin, USA, Washington State UniversityGoogle Scholar
  17. Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199CrossRefGoogle Scholar
  18. Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42(2):261–269CrossRefGoogle Scholar
  19. Bhattacharyya R, Ghosh B, Mishra P, Mandal B, Rao C, Sarkar D, Das K, Anil K, Lalitha M, Hati K, Franzluebbers A (2015) Soil degradation in India: challenges and potential solutions. Sustainability 7(4):3528CrossRefGoogle Scholar
  20. Bindraban PS, van der Velde M, Ye L, van den Berg M, Materechera S, Kiba DI, Tamene L, Ragnarsdóttir KV, Jongschaap R, Hoogmoed M, Hoogmoed W, Van Beek C, van Lynden G (2012) Assessing the impact of soil degradation on food production. Curr Opin Environ Sustain 4(5):478–488CrossRefGoogle Scholar
  21. Blair A, Fritschi L, McLaughlin J, Sergi CM, Calaf GM, LeCurieux F, Baldi I, Forastière F, Kromhout H, Mannetje A (2015) Carcinogenity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Ontology 16(5):490–491. doi:10.1016/S1470-2045(15)70134-8 CrossRefGoogle Scholar
  22. Blanc J (2009) Family farmers and major retail chains in the Brazilian organic sector: assessing new development pathways. J Rural Stud 25(3):322–332CrossRefGoogle Scholar
  23. Bleken MA, Steinshamn H, Hansen S (2005) High nitrogen costs of dairy production in Europe: worsened by intensification. AMBIO J Hum Environ 34(8):598–606CrossRefGoogle Scholar
  24. Bloomer D, Powrie J (eds) (2011) A guide to smart farming. Landwise Inc., Feilding, New Zealand, 188 ppGoogle Scholar
  25. BMU/UBA (2008) Umweltbewusstsein in Deutschland 2008: Ergebnisse einer repräsentativen Bevölkerungsumfrage. Heidelberg, Hannover.Google Scholar
  26. BMU/UBA (2013) Umweltbewusstsein in Deutschland 2012: Ergebnisse einer repräsentativen Bevölkerungsumfrage. Berlin, Marburg.Google Scholar
  27. BMU/UBA (2015) Umweltbewusstsein in Deutschland 2014: Ergebnisse einer repräsentativen Bevölkerungsumfrage. Berlin, Dessau-Roßlau.Google Scholar
  28. BÖLN (2013) Ökobarometer 2013: Repräsentative Bevölkerungsbefragung im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). http://www.bmel.de/SharedDocs/Downloads/Ernaehrung/Oekobarometer_2013.pdf,jsessionid = C2EBAA3B4259054C23393B2FB16A11AF.2_cid358?__blob = publicationFile Accessed 12 Mar 2016
  29. Brandt K, Molgaard JP (2001) Organic agriculture: does it in hands or reduce the nutritional value of plant foods? J Sci Food Agric 81:924–931CrossRefGoogle Scholar
  30. Brandt K, Leifert C, Sanderson R, Seal CJ (2011) Agri-ecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit Rev Plant Sci 30(1–2):177–197CrossRefGoogle Scholar
  31. Braun S, Rahmann G, Strotdrees S, Strotdrees L (2010) R-Evolution des Ökolandbaus !? : “Ökolandbau 3.0”. Trenthorst: Thünen-Institut für ökologischen Landbau, 5 pp.Google Scholar
  32. Canali S, Campanelli G, Ciaccia C, Leteo F, Testani E, Montemurro F (2013) Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. Eur J Agron 50:11–18CrossRefGoogle Scholar
  33. Canali S (2016) Italian Organic Research Strategy. Paper presented at the Italian Organic Research Conference 20th January 2016 in RomeGoogle Scholar
  34. Chathoth P, Altinay L, Harrington RJ, Okumus F, Chan ESW (2013) Co-production versus co-creation: a process based continuum in the hotel service context. Int J Hosp Manag 32:1–11CrossRefGoogle Scholar
  35. Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S (2005) Biodiversity: function and assessment in agricultural areas—a review. Agron Sustain Dev 25:1–15CrossRefGoogle Scholar
  36. Cooper JM, Baranski M, Nobel de Lange M, Bàrberi P, Fliessbach A, Peigné J, Berner A, Brock C, Casagrande M, Crowley O, David C, De Vliegher A, Döring T, Entz M, Grosse M, Haase T, Halde C, Hammerl V, Huiting H, Leithold G, Messmer M, Schloter M, Sukkel W, Van der Heijden M, Willekens K, Wittwer R and Mäder P (2014) Effects of reduced tillage in organic farming on yield, weeds and soil carbon: meta-analysis results from the TILMAN-ORG project. In: Rahmann and Aksoy (Eds.) Proceedings 18th IFOAM Organic World Congress, Istanbul. 1163–1166Google Scholar
  37. Costanzo A, Bàrberi P (2014) Functional agri-biodiversity and agri-ecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348CrossRefGoogle Scholar
  38. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297CrossRefGoogle Scholar
  39. Dangour AD, Dodhia SK, Hayter A, Allen E, Lock K, Uauy R (2009) Nutritional quality of organic foods: a systematic review. Am J Clin Nutr. doi:10.3945/ajcn.2009.28041 PubMedCentralGoogle Scholar
  40. Daniel-Gromke J, Liebetrau J, Nenysenko V, Krebs C (2015) Digestion of bio-waste—GHG emissions and mitigation potential. Energy, sustainability and Society 5(3):1–12Google Scholar
  41. de Ponti T, Rijk B, van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9CrossRefGoogle Scholar
  42. Deininger K, Byerlee D, Lindsay J, Norton A, Selod H, Stickler M (2011) Rising global interest in farmland. Can it yield sustainable and equitable benefits? The World Bank, Washington, D.C, p. 266CrossRefGoogle Scholar
  43. DeLong C, Cruse R, Wiener J (2015) The soil degradation paradox: compromising our resources when we need them the most. Sustainability 7(1):866–879CrossRefGoogle Scholar
  44. Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9(3):13pp. doi:10.1088/1748-9326/9/3/034011
  45. Diacono M, Fiore A, Farina R, Canali S, di Bene D, Testani E, Montemurro F (2016) Combined agri-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital J Agron 11:85–91CrossRefGoogle Scholar
  46. Draghetti A (1948) Principi di fisiologia dell’azienda agraria Milano/Bologna: Istituto editoriale agricolo, Italy, 355 ppGoogle Scholar
  47. Dregne HE (ed) (1992) Degradation and restoration of arid lands. Texas Technical University, Lubbock TX, USA, 289ppGoogle Scholar
  48. EC (2007) Council Regulation (EC) No 834/2007on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off J Eur Union L189:1–23Google Scholar
  49. Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AMR, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London B: Biological Sciences 368(1621)Google Scholar
  50. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nature Geosci 1(10):636–639CrossRefGoogle Scholar
  51. Erisman JW, Van Eekeren N, Koopmans C, De Wit J, Cuijpers W, Oerlemans N, and Koks B (2016) Agriculture and biodiversity: a better balance benefits both. AIMS Agriculture and Food.Google Scholar
  52. European-Commission (2012) European Commission. Prospects for agricultural markets and income in the EU 2012–2022. Directorate-General for Agriculture and Rural Development (December).Google Scholar
  53. European Commission (EC) (2016) EGTOP Final Report on Organic Fertilizers and Soil Conditioners (II). http://ec.europa.eu/agriculture/organic/eu-policy/expertadvice/documents/final-reports/final-report-egtop-onfertilizers-2_en.pdf. Accessed 10 March 2016)
  54. Ezzati M et al (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387:1377–1396CrossRefGoogle Scholar
  55. FAO (2011a) Evaluation of certain veterinary drug residues in food [Homepage of WHO Technical Report Series], [Online]. Available: http://whqlibdoc.who.int/publications/2012/9789241209694_eng.pdf. Accessed on 16 Apr 2016.
  56. FAO (2011b) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. NY, UK, Earthscan, New YorkGoogle Scholar
  57. FAO (2012) Statistical Yearbook. Part1 The Setting. Rome, Food and Agricultural Organisation of the United Nations.Google Scholar
  58. FAO (2013) Food wastage footprint—impacts on natural resources. Rome, pp 63Google Scholar
  59. FAO (2015a) Natural capital impacts in agriculture. Supporting better business decision-making.www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Natural_Capital_Impacts_in_Agriculture_final.pdf. Accessed on 16 Apr 2016.
  60. FAO, IFAD and WFP (2014) The State of Food Insecurity in the World 2014. Strengthening the enabling environment for food security and nutrition. Rome, FAOGoogle Scholar
  61. FAO/WHO (1999) Codex Alimentarius Commission approves guidelines for organic food. (http://www.un.org/press/en/1999/19990706.SAG44.html, download 19.5.16)
  62. FAOSTAT (2013) FAOSTAT database. Food and Agriculture Organization of the United Nations. Available at: http://faostat.fao.org Accessed on 16Apr 2016.
  63. Felber C (2015) Change everything—creating an economy for the economy of common good. Zed books, London, 192ppGoogle Scholar
  64. Fiala N (2008) Meeting the demand: an estimation of potential future greenhouse gas emissions from meat production. Ecol Econ 67(3):412–419CrossRefGoogle Scholar
  65. Fiala N (2009) The greenhouse hamburger. Sci Am 300:72–75PubMedCrossRefGoogle Scholar
  66. Frøseth RB 2016. Nitrogen dynamics in an organic green manure—cereal rotation and mineralization of clover leaves at low temperature. Norwegian University of Life Sciences. Philosophiae Doctor (PhD) Thesis 2016:25, ISSN: 1894-6402, ISBN: 978–82–575-1335-1.Google Scholar
  67. Gabriel D, Sait SM, Kunin WE, Benton TG (2013) Food production vs. biodiversity: comparing organic and conventional agriculture. J Appl Ecol 50(2):355–364CrossRefGoogle Scholar
  68. Gambelli D, Solfanelli F, Zanoli R, Zorn A, Lippert C, Dabbert S (2014a) Non-compliance in organic farming: a cross-country comparison of Italy and Germany. Food Policy 49(P2):449–458CrossRefGoogle Scholar
  69. Gambelli D, Solfanelli F, Zanoli R (2014b) Feasibility of risk-based inspections in organic farming: results from a probabilistic model. Agricultural Economics (United Kingdom) 45(3):267–277CrossRefGoogle Scholar
  70. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci 109(44):18226–18231PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  72. Golan E, Kuchler F, Mitchell L (2001) Economics of food labeling. J Consum Policy 24(2):117–184CrossRefGoogle Scholar
  73. Gosling P, Shepherd M (2005) Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105:425–432CrossRefGoogle Scholar
  74. Grebmer KV, Saltzman A, Birol E, Wiesmann D, Prasai N, Yin S, Yohannes Y, Menon P, Thompson J and Sonntag A (2014) Global hunger index. The challenge of hidden hunger. Bonn / Washington, D.C. / Dublin, Welthungerhilfe / IFPRI / Concern worldwide 56 pp.Google Scholar
  75. Grinsven HJMV, Erisman JW, Wd V, Westhoek H (2015) Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environ Res Lett 10(2):025002CrossRefGoogle Scholar
  76. Grönroos C (2011) Value co-creation in service logic: a critical analysis. Mark Theory 11(3):279–301CrossRefGoogle Scholar
  77. Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic and Applied Ecology 4:107–116CrossRefGoogle Scholar
  78. Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R and Meybeck A (2011) Global food losses and food waste—extent, causes and prevention. Rome. http://foodsecurityindex.eiu.com/Home/DownloadResource?fileName=EIU_GFSI%202014_Special%20report_Food%20loss.pdf. (Accessed 16 Apr 2016)
  79. Haas G, Deittert C, Köpke U (2007) Farm-gate nutrient balance assessment of organic dairy farms at different intensity levels in Germany. Renew Agr Food Syst 22:223–232CrossRefGoogle Scholar
  80. Hamm U, Häring A, Horn S, Hülsbergen HJ, Isermeyer F, Lange S, Michaelis T, Niggli U, Rahmann G (eds) (2016) Future strategy of the organic food and farming sector. A result of a particpatory approach with the stakeholders 2014–2016. Prepared for the Fachforum Ökologische Lebensmitttelwirtschaft of the German Agricultural Research Alliance, Braunschweig, Germany, 19 pp.Google Scholar
  81. Harvey D, Hubbard C (2013) Reconsidering the political economy of farm animal welfare: an anatomy of market failure. Food Policy 38:105–114CrossRefGoogle Scholar
  82. Hauser R, Skakkebaek NE, Hass U, Toppari T, Juul A, Andersso AM, Kortenkamp A, Heindel JJ, Trasande L (2015) Male reproductive disorders, diseases and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 100(4):1267–1277PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hellriegel H and Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins der Rübenzucker-Industrie des Deutschen Reichs Bd. 38, Berlin, Germany.Google Scholar
  84. Hemmerling S, Hamm U, Spiller A (2015) Consumption behaviour regarding organic food from a marketing perspective—a literature review. Org Agric 5(4):277–313CrossRefGoogle Scholar
  85. Henchion M, McCarthy M, Resconi VC, Troy D (2014) Meat consumption: trends and quality matters. Meat Sci 98(3):561–568PubMedCrossRefGoogle Scholar
  86. Hess J, Rahmann G (eds) (2005) Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau “Ende der Nische” Kassel, 1.-4. März 2005. Kassel Univ Pr, Germany, Kassel, 656ppGoogle Scholar
  87. Hine R, Pretty J and Twarog S (2008) Organic agriculture and food security in Africa. Geneva and New York, (UNCTAD/DITC/TED/2007/15). United Nations. http://unctad.org/en/docs/ditcted200715_en.pdf
  88. Hjelmar U (2011) Consumers’ purchase of organic food products. A matter of convenience and reflexive practices. Appetite 56:336–344PubMedCrossRefGoogle Scholar
  89. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122(1):113–130CrossRefGoogle Scholar
  90. Holt-Giménez E, Shattuck A, Altieri M, Herren H, Gliessman S (2012) We already grow enough food for 10 billion people…and still can’t end hunger. J Sustain Agric 36(6):595–598CrossRefGoogle Scholar
  91. Hov Ø, Cubasch U, Fischer E, Höppe P, Iversen T, Kvamstø NG, Kundzewicz ZW, Rezacova D, Rios D, Santos FD et al. 2013. Extreme weather events in Europe: preparing for climate change adaptation [Internet]. Oslo: Norwegian Meteorological Institute; [cited 2013 Nov 20]. Available from: http://www.dnva.no.
  92. Howard P (2013) Organic industry structure. Journal of the New Media Caucus 5(3)Google Scholar
  93. Huber M, Knottnerus JA, Green L, Horst HvD, Jadad AR, Kromhout D, Leonard B, Lorig K, Loureiro MI, von en Meer JWM, Schnabel P, Smith R, Weel Cv and Smid H (2011) How should we define health? BMJ 343.Google Scholar
  94. Huesmann MH (2001) Can pollution problems be effectively solved by environmental science and technology? An analysis of critical limitations. Ecol Econ 37:271–287CrossRefGoogle Scholar
  95. Hughner RS, McDonagh P, Prothero A, Shultz CJ, Stanton J (2007) Who are organic food consumers? A compilation and review of why people purchase organic food. J Consum Behav 6(2–3):94–110CrossRefGoogle Scholar
  96. Hülsbergen, KJ, Rahmann, G (eds) (2013) Klimawirkungen und Nachhaltigkeit ökologischer und konventioneller Betriebssysteme - Untersuchungen in einem Netzwerk von Pilotbetrieben. Braunschweig: Johann Heinrich von Thünen-Institut, 412 p, Thünen Rep 8, DOI: 10.3220/REP_8_2013
  97. IAASTD (2009) Agriculture at a crossroads. Island Press, Washington, D.CGoogle Scholar
  98. IFOAM (2005) Principles of organic agriculture. Bonn, GermanyGoogle Scholar
  99. IISD (2016) The imperative of sustainable production and consumption. International Institute for Sustainable Development (IISD) Reporting Services: http://www.iisd.ca/consume/oslo004.html
  100. IPCC (2014a) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.Google Scholar
  101. IPCC (2014b) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland, IPCC.Google Scholar
  102. Jahn G, Schramm M, Spiller A (2005) The reliability of certification: quality labels as a consumer policy tool. J Consum Policy 28(1):53–73CrossRefGoogle Scholar
  103. Johannsson L, Haglund A, Berglund L, Lea P, Risvik E (1999) Preference for tomatoes, affected by sensory attributes and information about growth conditions. Food Qual Prefer 10(4–5):289–298CrossRefGoogle Scholar
  104. Jonas H (1984) The imperative of responsibility: in search of an ethics for the technological age, University of Chicago Press, 263 pp.Google Scholar
  105. Jonston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57CrossRefGoogle Scholar
  106. Kahl J (2012) Organic food quality: from field to fork. J Sci Food Agric 92(14):2751–2752PubMedCrossRefGoogle Scholar
  107. Kahl J, Alborzi F, Beck A, Bugel S, Busscher N, Geier U, Matt D, Meischner T, Paoletti F, Pehme S, Ploeger A, Rembiałkowska E, Schmid O, Strassner C, Taupier-Letage B, Załęcka A (2014a) Organic food processing: a framework for concept, starting definitions and evaluation. J Sci Food Agric 94(13):2582–2594PubMedCrossRefGoogle Scholar
  108. Kahl J, Baars T, Bügel S, Busscher N, Huber V, Kusche D, Rembiałkowska E, Schmid O, Seidel K, Taupier-Letage B, Velimirov A, Załęcka A (2012b) Organic food quality: a framework for concept, definition and evaluation from the European perspective. J Sci Food Agric 92(14):2760–2765PubMedCrossRefGoogle Scholar
  109. Kahl J, van der Burgt GJ, Kusche D, Bugel S, Busscher N, Hallmann E, Kretzschmar U, Ploeger A, Rembiałkowska E, Huber M (2010) Organic food claims in Europe. Food Technol 64(3):38–46Google Scholar
  110. Kahl J, Załęcka A, Ploeger A, Bügel S, Huber M (2012a) Functional food and organic food are competing rather than supporting concepts in Europe. Agriculture 2(4):316CrossRefGoogle Scholar
  111. Kahl J, Bodroza-Solarov M, Busscher N, Hajslova J, Kneifel W, Kokornaczyk MO, van Ruth S, Schulzova V, Stolz P (2014b) Status quo and future research challenges on organic food quality determination with focus on laboratory methods. J Sci Food Agric 94(13):2595–2599PubMedCrossRefGoogle Scholar
  112. Kesse-Guyot E, Péneau S, Méjean C, Szabo de Edelenyi F, Galan P, Hercberg S, Lairon D (2013) Profiles of organic food consumers in a large sample of French adults: results from the Nutrinet-Santé cohort study. PLoS One 8(10)Google Scholar
  113. Koepf HH, Pettersson BD, Schaumann W (1976) Bio-dynamic agriculture. Anthroposophic Press, Hudson, NYGoogle Scholar
  114. Köpke U (2005) Organic foods: do they have a role? Elmadfa I (ed.): Diet diversification and health promotion. Forum of Nutrition, Basel. Karger, 2005, vol 57, 62–72Google Scholar
  115. Köpke U (2016a) Konzept Modellbetrieb Wiesengut – Multifunktionale Landwirtschaft durch Organischen Landbau. Call date: 5 April 2016. https://www.wiesengut.uni-bonn.de/betrieb/konzept-modellbetrieb-wiesengut.
  116. Köpke U (2016b) Entwicklung des Ökologischen Landbaus - zum Wechselspiel zwischen Landwirtschaft, Naturschutz und Ökologie (the evolution of organic agriculture—on the interplay between farming, conservation and ecology). Natur und Landschaft 91(9/10):445–449Google Scholar
  117. Köpke U (2017) Ressourcenschutz und Ökologische Leistungen. B Freyer (ed.) Ökologischer Landbau - Grundlagen, Wissensstand und Herausforderungen. UTB - Agrarwissenschaften, Stuttgart, ISBN 9 783825246396, 590–612.Google Scholar
  118. Kristiansen P, Taji A and Reganold J (eds) (2006) Organic agriculture. A global perspective. Collingwood, Victoria, Australia, 484 pp.Google Scholar
  119. Kriwy P, Mecking R-A (2012) Health and environmental consciousness, costs of behaviour and the purchase of organic food. Int J Consum Stud 36(1):30–37CrossRefGoogle Scholar
  120. Kumar N, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238PubMedCrossRefGoogle Scholar
  121. Kummu M, Hd M, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland and fertiliser use. Sci Total Environ 438:477–489PubMedCrossRefGoogle Scholar
  122. Kuosmanen T, Niemi J (2009) What explains the widening gap between the retail and producer prices of food? Agricultural and Food Science 18:317Google Scholar
  123. Laird TJ (1995) Community supported agriculture: a study of an emerging agricultural alternative. In Partial Fulfilment of the Requirements for the Degree of Master of Science Specializing in Natural Resource Planning.The Faculty of the Graduate Collage of The University of Vermont, 128 ppGoogle Scholar
  124. Lairon D (2010) Nutritional quality and safety of organic food. A review. Agronomy for Sustainable Development 30(1):33–41CrossRefGoogle Scholar
  125. Lal R (2009) Soils and food sufficiency. A review. Agron Sustain Dev 29(1):113–133CrossRefGoogle Scholar
  126. Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14(6):539–550CrossRefGoogle Scholar
  127. Levidow L, Birch K, Papaioannou T (2012) Divergent paradigms of European agri-food innovation: the Knowledge-Based Bio-Economy (KBBE) as an R&D agenda. Sci Technol Hum Values 38:94–125CrossRefGoogle Scholar
  128. Løes, AK 2016. What does the organic sector think about different phosphorous fertilizers? NORSØK report Vol. 1/No. 3 / 2016. Norwegian Centre for Organic Agriculture (NORSØK), Tingvoll, Norway.Google Scholar
  129. Løes AK, Bünemann EK, Cooper J, Hörtenhuber S, Magid J, Oberson A, Möller K (2016) Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries. Org Agr. doi:10.1007/s13165-016-0165-3 Google Scholar
  130. Lotter DW (2003) Organic agriculture. J Sustain Agric 21(4):59–128CrossRefGoogle Scholar
  131. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697PubMedCrossRefGoogle Scholar
  132. Mazzoncini M, Canali S, Giovannetti M, Castagnoli M, Tittarelli F, Antichi D, Nannelli R, Cristani C, Bàrberi P (2010) Comparison of organic and conventional stockless arable systems: a multidisciplinary approach to soil quality evaluation. Appl Soil Ecol 44:124–132CrossRefGoogle Scholar
  133. Migliorini P, Moschini V, Tittarelli F, Ciaccia C, Benedettelli S, Vazzana C, Canali S (2014) Agronomic performance, carbon storage and nitrogen utilisation of long-term organic and conventional stockless arable systems in Mediterranean area. Eur J Agron 52:138–145CrossRefGoogle Scholar
  134. McDonough M, Braungart M (2002) Cradle to cradle : remaking the way we make things. North Point Press, New YorkGoogle Scholar
  135. Mijatovic D, Van Oudenhoven F, Eyzaguirre P, Hodgkins T (2013b) The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework. Int J Agric Sustain 11(2):95–107CrossRefGoogle Scholar
  136. Mijatovic D, Eyzaguirre P, Milder J (2013a) Landscape perspectives on in situ/on farm crop conservation. Report to the landscapes for people, food and nature intiative. Maccarese: Bioversity International, Rome, p. 66Google Scholar
  137. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DCGoogle Scholar
  138. Ministry of Agriculture Fisheries and Food of the United Kingdom (2000) Energy use in organic farming systems. MAFF Project Code OF0182. London, UK.Google Scholar
  139. Mollison BC, Holmgren D (1978) Permaculture One: a perennial agriculture for human settlements. Transworld, MelbourneGoogle Scholar
  140. Mollison BC (1990) Permaculture: a practical guide for a sustainable future. Island PressGoogle Scholar
  141. Montgomery D (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci U S A 104(33):13268–13272PubMedPubMedCentralCrossRefGoogle Scholar
  142. Moonen AC, Bàrberi P (2008) Functional biodiversity: an agri-ecosystem approach. Agric Ecosyst Environ 127:7–21CrossRefGoogle Scholar
  143. Moos JH, Schrader S, Paulsen HM, Rahmann G (2016) Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency. Appl Soil Ecol 103:22–30CrossRefGoogle Scholar
  144. Mozafar A (1993) Nitrogen fertilisers and the amount of vitamins and plants: a review. J Plant Nutrition 16(12):2479–2506CrossRefGoogle Scholar
  145. Mpountoukas P, Pantazaki A, Kostareli E, Christodoulou P, Kareli D, Polilou S, Mourelatos C, Lambropoulou V, Lialiaris T (2010) Cytogenetic evaluation and DNA interaction studies on the food colorants amaranth, erythrosine and tartrazine. Food Chemistry Toxicol 48(10):2934–2944CrossRefGoogle Scholar
  146. Müller C (Ed.) (2011) Urban Gardening. Über die Rückkehr der Gärten in die Stadt. Oekom-Verlag, 210 ppGoogle Scholar
  147. Müller-Lindenlauf M (2009) Umweltwirkungen ökologisch wirtschaftender Milchviehbetriebe unterschiedlicher Fütterungsintensität und Produktionsstruktur. PhD thesis, University of Bonn. Berlin, Germany, Dr. Köster.Google Scholar
  148. Naspetti S, Zanoli R (2009) Organic food quality and safety perception throughout Europe. J Food Prod Mark 15(3):249–266CrossRefGoogle Scholar
  149. Naspetti S, Zanoli R (2014) Organic consumption as a change of mind? Exploring consumer narratives using a structural cognitive approach. Journal of International Food & Agribusiness Marketing 26(4):258–285CrossRefGoogle Scholar
  150. Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nida Rümelin J (2005) Angewandte Ethik. Die Bereichsethiken und ihre theoretische Fun- dierung. Stuttgart. 2. Edition.Google Scholar
  152. Niggli U (2016) “CRISPR hat großes Potenzial”. Interview in the German newspaper “taz” (Die Tageszeitung) from 6.4.2016 (http://www.taz.de/!5290509/)
  153. Niggli U (2014) Sustainability of organic food production: challenges and innovations. Proc Nutr Soc 74(01):83–88PubMedCrossRefGoogle Scholar
  154. Niggli U, Rahmann G (2013) Forschung – Treibende Kraft für Veränderungen. Ökologie & Landbau 167(3):12–14Google Scholar
  155. Niggli U, Baker BP, Rahmann G, Cuoco E, Möller C, Ssebunya B, Shaikh Tanveer H, Wivstad M, Chang J, Soto G, Gould D, Lampkin N, Chander M, Soto G, Gould D, Lampkin N, Chander M, Mapusua K, Wynen E, Qiao Y (2014) Technology Innovation Platform of IFOAM (TIPI): a global vision and strategy for organic farming research, first draft, October 12, 2014, first draft, presented at the TIPI workshop. Frick: FiBL, 78 pp.Google Scholar
  156. Niggli U, Fließbach A, Hepperly P and Scialabba N (2009) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. FAO, April 2009, Rev. 2 - 2009.Google Scholar
  157. Niggli U, Plagge J, Reese S, Fertl T, Schmid O, Brändli U, Bärtschi D, Pöpsel G, Hermanowski R, Hohenester H and Grabmann G (2015) Mit Bio zu einer modernen nachhaltigen Landwirtschaft. Ein Diskussionsbeitrag zum Öko- oder Biolandbau 3.0. 2nd draft. Prepared for the German speaking Organic Associations of Bioland e.V. (Mainz, Germany), BioAustria, (Vienna, Austria) and BioSuisse (Basel, Switzerland), 36 pp.Google Scholar
  158. Noleppa J (2016). Pflanzenschutz in Deutschland und Biodiversität. Auswirkungen von Pflanzenschutzstrategien der konventionellen und ökologischen Landbewirtschaftung auf die regionale und globale Artenvielfalt. HFFA Research GmbH, Band 1/2016, www.hffa-research.com, 60 pp.
  159. Nuutila J, Kurppa S (2016a) The Finnish organic food chain—an activity theory approach. Organic Agricultre 6(1):49–56CrossRefGoogle Scholar
  160. Nuutila J, Kurppa S (2016b) Reaching goals for organic food in Finland—which changes should occur in the food chain? Org Agric. doi:10.1007/s13165-016-0158-2 Google Scholar
  161. Pugesgaard S, Olesen JE, Jørgensen U, Dahlgaard T (2014) Biogas in organic agriculture-effects on productivity, energy self-sufficiency and greenhouse gas emissions. Renewable Agriculture and Food Systems 29(1):28–41CrossRefGoogle Scholar
  162. OECD (2014) Overview of the OECD-FAO Outlook 2014–2023. OECD Publishing, ParisCrossRefGoogle Scholar
  163. OECD and FAO (2015) OECD and FAO Agricultural Outlook 2015–2024. OECD Publishing, Paris, 144ppCrossRefGoogle Scholar
  164. OECD-FAO (2013) Agricultural Outlook 2012–2021. RomeGoogle Scholar
  165. Oeld-Wieser T and Darnhofer I (2009) Gender Issues in der Landwirtschaft. Jahrbuch der Österreichischen Gesellschaft für Agrarökonomie 18 (2), WienGoogle Scholar
  166. Oppermann R and Rahmann G (2009) Neue Aufgaben der Vertrauensbildung in der Ökologischen Landwirtschaft. Applied Agriculture and Forestry Reserach special edition 314, 77–98, BraunschweigGoogle Scholar
  167. Oppermann R, Rahmann G and Schumacher U (2009) Wo steht der Ökologische Landbau heute mit Blick auf zentrale Forderungen der Tierschützer und den tierethischen Diskurs in unserer Gesellschaft? Applied Agriculture and Forestry Research special edition 314, 7–20, BraunschweigGoogle Scholar
  168. Padel S, Foster C (2005) Exploring the gap between attitudes and behavior: understanding why consumers buy or do not buy organic food. Br Food J 107(8):606–625CrossRefGoogle Scholar
  169. Palupi E, Jayanegara A, Ploeger A, Kahl J (2012) Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis. J Sci Food Agric 92(14):2774–2781PubMedCrossRefGoogle Scholar
  170. Paull J (2011) Koberwitz (Kobierzyce): In the footsteps of Rudolf Steiner. http://orgprints.org/18836/1/Paull2011KoberwitzJOS.pdf. (Accessed 16 Apr. 2016)
  171. Paulsen HM, Haneklaus S, Rahmann G, Schnug E (2009a) Organic plant production—limited by nutrient supply?: an overview. In: Proceedings CIEC 2009: 18th Symposium of the International Scientific Centre of Fertilizers, more sustainability in agriculture: new fertilizers and fertilization management, 8–12 November 2009 Rome, Italy. Rome: CIEC, 373–380Google Scholar
  172. Paulsen HM, Schrader S, Schnug E (2009b) Eine kritische Analyse von Ruschs Theorien zur Bodenfruchtbarkeit als Grundlage für die Bodenbewirtschaftung im Ökologischen Landbau. Landbauforschung - vTI Agriculture and Forestry Research 59(3):253–268Google Scholar
  173. Paulsen MP, Köpke U, Oberson A, Rahmann G (2016) Phosphorus—the predicament of organic farming. In: Ewald Schnug E, de Kok LJ (eds) Phosphorus in agriculture: 100% zero. Springer, Dordrecht, The Netherlands, pp. 195–214Google Scholar
  174. Pearce D and Moran D (1994) The economic value of biodiversity. London, UK, IUCN - The World Conservation Union, Earthscan Publications Ltd, 172 pp.Google Scholar
  175. Pearson D, Henryks J, Moffitt E (2007) What do buyers really want when they purchase organic foods? An investigation using product attributes. Journal of Organic Systems 2(1):1–9Google Scholar
  176. Pearson D, Henryks Jand Jones H (2011) Organic food: what we know (and do not know) about consumers. Renewable Agriculture and Food Systems 26(02):171–177CrossRefGoogle Scholar
  177. Peigné J, Ball BC, Roger-Estrade J, David C (2007) Is conservation tillage suitable for organic farming? Soil Use Manag 23:129–144CrossRefGoogle Scholar
  178. Peigné J, Casagrande M, Payet V, David C, Sans FX, Blanco-Moreno JM, Cooper J, Gascoyne K, Antichi D, Bàrberi P, Bigongiali F, Surböck A, Kranzler A, Beeckman A, Willekens K, Luik A, Matt D, Grosse M, Heß J, Clerc M, Dierauer H, Mäder P (2016) How organic farmers practice conservation agriculture in Europe. Renewable Agriculture and Food Systems 31(1):72–85CrossRefGoogle Scholar
  179. Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137CrossRefGoogle Scholar
  180. Pino G, Peluso AM, Guido G (2012) Determinants of regular and occasional consumers’ intentions to buy organic food. J Consum Aff 46(1):157–169CrossRefGoogle Scholar
  181. Ponisio LC, M’Gonigle LK, Mace KC, Palomino J, de Valpine P, Kremen C (2015) Diversification practices reduce organic to conventional yield gap. Proc R Soc B 282:20141396. doi:10.1098/rspb.2014.1396 (Accessed 16 Apr 2016)PubMedPubMedCentralCrossRefGoogle Scholar
  182. Pretty J, Hine R (2001) Reducing food poverty with sustainable agriculture: a summary of new evidence. Final report from the ‘SAFE World’ Research Project. University of Essex, Colchester, UK, 136ppGoogle Scholar
  183. Price L, de la Rue du Can S, Sinton J, Worrell E, Nan Z, Sathaye J, Levine M (2006) Sectoral trends in global energy use and greenhouse gas emissions. Berkeley, Ernest Orlando Lawrence Berkeley National Laboratory 3(2):263–319Google Scholar
  184. Quinn S (2016) Number of vegans in Britain rises by 360% in 10 years. The Telegraph 18:2016Google Scholar
  185. Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66(7):1528–1537CrossRefGoogle Scholar
  186. Rahmann G (2000) Biotoppflege als neue Funktion und Leistung der Tierhaltung. Agraria 24:365Google Scholar
  187. Rahmann G (2010) Impact of organic farming on global warming—recent scientific knowledge. In: Book of Proceedings/International Conference on Organic Agriculture in Scope of Environmental Problems: 03–07 February 2010, Famagusta, Cyprus Island. Famagusta: European Mediterranean Conferences Conventions, 1–7Google Scholar
  188. Rahmann G (2011) Biodiversity and organic farming: what do we know? Landbauforsch 61(3):189–208Google Scholar
  189. Rahmann G (2016b) Ecological organic agriculture knowledge, information and experiences: going from Organic 1.0 towards Organic 3.0. In: Loconto AM, AdeOluwa OO, Akinbamijo Y (eds) Achieving social and economic development in Africa through ecological and organic agricultural alternatives. Food and Agriculture Organization of the United Nations, Abuja, Nigeria, pp. 82–90Google Scholar
  190. Rahmann, G (2015) Organic 3.0 needs significant and brave innovations with research. Discussion paper presented at the ISOFAR symposium, Organic 3.0 is Innovation with Research on the opening session on the 20th September 2015 in the LOHAS academy in Goesan. South Korea, 3 pp.Google Scholar
  191. Rahmann G, Aksoy U (eds) (2014) Building Organic Bridges : Vol. 2, Germany - India ; Proceedings of the 4th ISOFAR Scientific Conference at the Organic World Congress 2014, 13–15 October 2014 in Istanbul, Turkey. Braunschweig: Johann Heinrich von Thünen-Institut, 404 p, Thünen Rep 20, Vol. 2Google Scholar
  192. Rahmann G, Aulrich K, Barth K, Böhm H, Koopmann R, Oppermann R, Paulsen HM, Weißmann F (2008) Klimarelevanz des ökologischen Landbaus: Stand des Wissens. Landbauforsch 58(1–2):71–89Google Scholar
  193. Rahmann G, Godinho D (eds) (2012) Tackling the future challenges of organic animal husbandry. Braunschweig: vTI, Landbauforsch SH 362:481ppGoogle Scholar
  194. Rahmann G, Köpke U (2013) Ökoforschung international: globale Vernetzung immer wichtiger. Ökol Landbau (167,3):26–28Google Scholar
  195. Rahmann G, Oppermann R, Paulsen HM, Weißmann F (2009) Good, but not good enough?: research and development needs in organic farming. Landbauforsch 59(1):29–40Google Scholar
  196. Rahmann G, Strotdrees S, Strotdrees L, Braun S (2013) Gesucht: Ökolandbau 3.0: Der Ökolandbau muss sich weiter entwickeln. Lebendige Erde 14(5):16–17Google Scholar
  197. Rahmann G (2016a) Ecological organic agriculture knowledge, information and experiences: going from Organic 1.0 towards Organic 3.0. In: Loconto A, AdeOluwa O, Akinbamijo Y (eds) Achieving social and economic development in Africa through ecological and organic agricultural alternatives. FAO Series, Rome, pp. 21–30Google Scholar
  198. Raviv M (2010) Is organic horticulture sustainable? Chronica Horticulturae 50:7–14Google Scholar
  199. Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nature Plants . doi:10.1038/NPLANTS.2015.221Vol. 2Google Scholar
  200. Reissig L, Kohler A, Rossier R (2015) Workload on organic and conventional family farms in Switzerland. Organic Agriculture, online first 17.9.2015, pp 1–18Google Scholar
  201. Rob Hopkins R (2008) The transition handbook: from oil dependency to local resilience. Green Books, Totnes, Devon, 82 ppGoogle Scholar
  202. Rockström J et al (2009) A safe operating space for humanity. Nature, Feature 461:472–475CrossRefGoogle Scholar
  203. Rodhe LKK, Ascue J, Willén A, Vererfors Persson B, Nordberg Å (2015) Greenhouse gas emissions from stirage and field application of anaerobically digested and non-digested cattle slurry. Agric Ecosyst Environ 199:358–368CrossRefGoogle Scholar
  204. Rosegrant M, Paiser M, Meijer S and Witcover J (2001) Global food projections to 2020. 2020 vision series, International Food Policy Research Institute 54 pp.Google Scholar
  205. Rosenberger E, Götz K-U, Dodenhoff J, D. Krogmeier, R. Emmerling, B. Luntz and H. Anzenberger (2004) Überprüfung der Zuchtstrategie beim Fleckvieh, Bayerische Landesanstalt für Landwirtschaft Institut für Tierzucht. Poing/Grub, GermanyGoogle Scholar
  206. Rützler H and Reiter W (2014) Organic 3.0—Trend- und Potenzialanalyse für die Biozukunft. Prepared for Biofach 2014 by Zukunftsinstitut Austria, Vienna, Austria, 64 pp.Google Scholar
  207. Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soil. Lancet 265:442–444CrossRefGoogle Scholar
  208. Savory A, Butterfield J (1999) Holistic management—a new framework for decision making. Island Press, Washington DC, USA, 616pGoogle Scholar
  209. Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc Lond Ser B Biol Sci 363(1491):477–494CrossRefGoogle Scholar
  210. Scialabba NE-H, Müller-Lindenlauf M (2010) Organic agriculture and climate change. Renewable Agriculture and Food Systems 25(2):158–169CrossRefGoogle Scholar
  211. Seitzinger SP, Kroeze C, Bouwman AF, Caraco N, Dentener F, Styles RV (2002) Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: recent conditions and future projections. Estuaries 25:640–655CrossRefGoogle Scholar
  212. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485(7397):229–232PubMedCrossRefGoogle Scholar
  213. Siegmeier T, Blumenstein B, Möller D (2014a) The alliance of agricultural bioenergy and organic farming topics in scientific literature. Org Agric 2014(4):243–268Google Scholar
  214. Siegmeier T, Blumenstein B, Mühlrath D and Möller D (2014b) Structure and development of scientific journal publications on organic agriculture: a scientometric review. 4th ISOFAR Scientific Conference. ‘Building Bridges’, at the Organic World Congress 2014. G. Rahmann and U. Aksoy. Istanbul, Turkey. http://orgprints.org/22776/1/22776-OWC2014_MM.pdf (Accessed 16 Apr 2016).
  215. Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, Sundaram V, Liu H, Schirmer P, Stave C, Olkin I, Bravata DM (2012) Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann Intern Med 157(5):348–366PubMedCrossRefGoogle Scholar
  216. Soil Association (2009) Organic Market Report. Bristol, UK.Google Scholar
  217. Sommer S (2001) Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur J Agron 14:123–133CrossRefGoogle Scholar
  218. Spaapen JB (2015) A new evaluation culture is inevitable. Organic Farming 1:36–37CrossRefGoogle Scholar
  219. Squire G, Gibson GJ (1997) Scaling up and down: matching research with requirements in land management and policy. Scaling up. Cambridge University Press, Cambridge, pp. 17–34Google Scholar
  220. Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, Cozzi G, Larsen NK, Jordon T, Niggli U, Sakowski T, Calder P, Graham CGC, Sotiraki S, Stefanakis A, Stergiadis S, Yolcu H, Ihatzidimitriou E, Butler G, Stewart G, Leifert C (2016) Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br J Nutr. doi:10.1017/S0007114516000349 Google Scholar
  221. Stavi I, Lal R (2013) Agriculture and greenhouse gases, a common tragedy. A review. Agron Sustain Dev 33(2):275–289CrossRefGoogle Scholar
  222. Stinner DH (2007) The science of organic farming. Organic farming: an international history. W. Lockeretz. Oxfordshire & Cambridge, CAB International.Google Scholar
  223. Stolz H, Stolze M, Janssen M, Hamm U (2011) Preferences and determinants for organic, conventional and conventional-plus products—the case of occasional organic consumers. Food Qual Prefer 22(8):772–779CrossRefGoogle Scholar
  224. Strassner C, Cavoski I, Di Cagno R, Kahl J, Kesse-Guyot E, Lairon D, Lampkin N, Løes A-K, Matt D, Niggli U, Paoletti F, Pehme S, Rembiakowska E, Schader C, Stolze M (2015) How the organic food system supports sustainable diets and translates these into practice. Frontiers in Nutrition 2:19PubMedPubMedCentralCrossRefGoogle Scholar
  225. Strotdrees S, Strotdrees L, Braun S, Rahmann G (2011) Ökolandbau 3.0? Landbauforsch SH 354: 5–8, Braunschweig/TrenthorstGoogle Scholar
  226. Suttie JM, Reynolds SG and Batello C (2005) Grasslands of the world. FAO—plant productin and protection series no. 34, Rome, pp 22Google Scholar
  227. Tauscher B, Brack G, Flachowsky G, Henning M, Köpke U, Meier-Ploeger A, Münzing K, Niggli U, Pabst K, Rahmann G, Willhöft C and Mayer-Miebach E (2003) Bewertung von Lebensmitteln verschiedener Herkunft. Statusbericht 2003. BMEL-Senatsarbeitsgruppe Qualitative Bewertung von Lebensmitteln aus alternativer und konventioneller Produktion. Final Report, Karlsruhe, 161 pp.Google Scholar
  228. Thogersen J (2010) Country differences in sustainable consumption: the case of organic food. Journal of Macromarketing 30(2):171–185CrossRefGoogle Scholar
  229. Thornton PK (2010) Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365(1554):2853–2867PubMedPubMedCentralCrossRefGoogle Scholar
  230. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R and Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science, 292(5515), 281-284.Google Scholar
  231. Toenniessen G, Adesina A, de Vries J (2008) Building an allinace for a green revolution in Africa. Annals of New York Academy of Sciences 1136:233–242CrossRefGoogle Scholar
  232. Torjusen H, Sangstad L, O’Doherty-Jensen K and Kjaernes U (2004) European consumers’ conceptions of organic food: a review of available research, Project Report 4-2004 for National Institute for Consumer Research. Oslo, Norway.Google Scholar
  233. TPorganics (2016) Research and innovation for our future food systems Position paper of TP Organics. (http://tporganics.eu/wpcontent/uploads/2016/06/TPOrganics_position_ paper_future_food_systems_final-1.pdf. 5 pp
  234. Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P (2013) The FAOSTAT database of greenhouse gas emissions from agriculture. Environ Res Lett 8(1):1–11CrossRefGoogle Scholar
  235. Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51(3):746–755PubMedPubMedCentralCrossRefGoogle Scholar
  236. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts?—a meta-analysis of European research. J Environ Manag 112:309–320CrossRefGoogle Scholar
  237. UN (2012) Secretary-General’s Initial Input to the Open Working Group on Sustainable Development Goals. https://sustainabledevelopment.un.org/content/documents/1494sgreportsdgs.pdf. New York, (Accessed16 Apr 2016).
  238. UN (2015a) Sustainable Development 2015a. Helping stakeholders shape new global goals for humanity’s future. http://www.sustainabledevelopment2015.org (Accessed 16 Apr. 2016).
  239. UN (2015b) World Population Prospects: the 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.Google Scholar
  240. UNEP (2014) Assessing global land use: balancing consumption with sustainable supply.Google Scholar
  241. UNPD (2015) United Nations, Department of Economic and Social Affairs, Population Division (2015) World Population Prospects: the 2015 Revision, World Population 2015 Wallchart. ST/ESA/SER.A/378. http://esa.un.org/unpd/wpp/Publications/ (Accessed on 16 March 2016).
  242. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  243. Veldstra MD, Alexander CE, Marshall MI (2014) To certify or not to certify? Separating the organic production and certification decisions. Food Policy 49(P2):429–436CrossRefGoogle Scholar
  244. Vendomois JS, Cellier D, Velot C, Clair E, Mesnage R, Seralini GE (2010) Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci 6(6):590–598PubMedPubMedCentralCrossRefGoogle Scholar
  245. Verbeke WSJ, Lahteenmaki L (2009) Consumer appeal of nutrition and health claims in three existing product concepts. Appetite 52:584–692CrossRefGoogle Scholar
  246. Vickery BC (1948) Bradford’s law of scattering. J Doc 4(3):198–203CrossRefGoogle Scholar
  247. Vogt G (2007) The origins of organic farming. Organic farming—an international history. W. Lockeretz. Oxfordshire UK and Cambridge MA USA, CABI: 9–29.Google Scholar
  248. Vogt G (2000) Entstehung und Entwicklung des ökologischen Landbaus im deutschsprachigen Raum. Ökologische Konzepte 99, Stiftung Ökologie und Landbau, Bad Dürkheim, 399 pp.Google Scholar
  249. Wägeli S, Hamm U (2015) Consumers’ perception and expectations of local organic food supply chains. Organic Agriculture, online first 15(8):1–10Google Scholar
  250. Watson CA, Walker RL, Stockdale EA (2008) Research in organic production systems—past, present and future. J Agric Sci 146(01):1–19CrossRefGoogle Scholar
  251. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) (2000) Land use, land use change and forestry. Cambridge University Press, Cambridge, UKGoogle Scholar
  252. WHO (2011) Tackling antibiotic resistance from a food safety perspective in Europe, tackling antibiotic resistance from a food safety perspective in Europe, 88 pp.Google Scholar
  253. Willer H, Lernoud J (2016) The World of Organic Agriculture. Statistics and Emerging Trends 2016. FiBL and IFOAM Report. Frick, Bonn, 340ppGoogle Scholar
  254. Wissenschaftlicher Beirat Agrarpolitik beim BMEL (2015) Wege zu einer gesellschaftlich akzeptierten Nutztierhaltung. Gutachten, BerlinGoogle Scholar
  255. Wolf B, Haering AM, Hess J (2015) Strategies towards evaluation beyond scientific impact. Pathways not only for agricultural research. Organic Farming 1:3–18CrossRefGoogle Scholar
  256. Wood S, Sebastian K, Scherr SJ (2000) Pilot analysis of global ecosystems: agri-ecosystems, international food policy and research. Institute & World Resources Institute, Washington, DC, USAGoogle Scholar
  257. Wood SA, Karp DS, DeClerck F, Kremen C, Naeem S, Palm CA (2015) Functional traits in agriculture: agri-biodiversity and ecosystem services. Trends Ecol Evol 30(9):531–539PubMedCrossRefGoogle Scholar
  258. Zagata L (2012) Consumers’ beliefs and behavioral intentions towards organic food. Evidence from the Czech Republic. Appetite 59(1):81–89PubMedCrossRefGoogle Scholar
  259. Załęcka A, Bügel S, Paoletti F, Kahl J, Bonanno A, Dostalova A, Rahmann G (2014) The influence of organic production on food quality—research findings, gaps and future challenges. J Sci Food Agric 94(13):2600–2604PubMedCrossRefGoogle Scholar
  260. Zanoli R, Gambelli D, Vairo D (2012) Scenarios of the organic food market in europe. Food Policy 37(1):41–57CrossRefGoogle Scholar
  261. Zanoli R, Naspetti S (2002) Consumer motivations in the purchase of organic food: a means-end approach. Br Food J 104:643–653CrossRefGoogle Scholar
  262. Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gerold Rahmann
    • 1
  • M. Reza Ardakani
    • 2
  • Paolo Bàrberi
    • 3
  • Herwart Boehm
    • 4
  • Stefano Canali
    • 5
  • Mahesh Chander
    • 6
  • Wahyudi David
    • 7
  • Lucas Dengel
    • 8
  • Jan Willem Erisman
    • 9
  • Ana C. Galvis-Martinez
    • 10
  • Ulrich Hamm
    • 11
  • Johannes Kahl
    • 12
  • Ulrich Köpke
    • 13
  • Stefan Kühne
    • 14
  • S. B. Lee
    • 15
  • Anne-Kristin Løes
    • 16
  • Jann Hendrik Moos
    • 4
  • Daniel Neuhof
    • 13
  • Jaakko Tapani Nuutila
    • 17
  • Victor Olowe
    • 18
  • Rainer Oppermann
    • 4
  • Ewa Rembiałkowska
    • 19
  • Jim Riddle
    • 20
  • Ilse A. Rasmussen
    • 21
  • Jessica Shade
    • 22
  • Sang Mok Sohn
    • 23
  • Mekuria Tadesse
    • 24
  • Sonam Tashi
    • 25
  • Alan Thatcher
    • 26
  • Nazim Uddin
    • 27
  • Peter von Fragstein und Niemsdorff
    • 11
  • Atle Wibe
    • 16
  • Maria Wivstad
    • 28
  • Wu Wenliang
    • 29
  • Raffaele Zanoli
    • 30
  1. 1.International Society of Organic Farming Research, c/o Thünen-Institute of Organic FarmingGerman Federal Research Centre for Rural Areas, Forestry and FisheryWesterauGermany
  2. 2.Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural ResourcesIslamic Azad UniversityKarajIran
  3. 3.Institute of Life SciencesScuola Superiore Sant’AnnaPisaItaly
  4. 4.Thünen-Institute of Organic FarmingGerman Federal Research Centre for Rural Areas, Forestry and FisheryWesterauGermany
  5. 5.Consiglio per la ricerca in agricoltura l’analisi dell’economia agraria (CREA)Centro per lo studio delle relazioni tra pianta e suolo (RPS)RomeItaly
  6. 6.Division of Extension EducationIndian Veterinary Research InstituteIzatnagarIndia
  7. 7.Program Studi Ilmu Dan Teknologi PanganUniversitas BakrieJakartaIndonesia
  8. 8.EcoPro, Aurosarjan Complex, AuroshilpamAurovilleIndia
  9. 9.Louis Bolk InstituteAmsterdamThe Netherlands
  10. 10.Latin American Scientific Society of Agroecology (SOCLA) (www.socla.co)University of CaliforniaBerkleyUSA
  11. 11.Department of Agricultural- and Food Marketing, Faculty of Organic Agricultural SciencesUniversity of KasselWitzenhausenGermany
  12. 12.Department of Nutrition, Exercise and Sports, Preventive and Clinical NutritionUniversity of CopenhagenKøbenhavn NDenmark
  13. 13.Institute of Organic AgricultureUniversity of BonnBonnGermany
  14. 14.Institute for Strategies and Technology AssessmentJulius Kühn-InstituteKleinmachnowGermany
  15. 15.Organic Agriculture Division, Department of Agricultural EnvironmentNational Academy of Agricultural Science, Rural Development Administration (RDA)Wanju-gunRepublic of Korea
  16. 16.Norwegian Centre for Organic Agriculture (NORSØK)TingvollNorway
  17. 17.Finnish Organic Research Institute. Natural Resources Institute FinlandUniversity of HelsinkiMikkeliFinland
  18. 18.Institute of Food Security, Environmental Resources and Agricultural Research (IFSERAR)Federal University of AgricultureAbeokutaNigeria
  19. 19.Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer StudiesWarsaw University of Life SciencesWarszawaPoland
  20. 20.The Ceres TrustChicagoUSA
  21. 21.ICROFS FoulumTjeleDenmark
  22. 22.The Organic CenterWashingtonUSA
  23. 23.Research Institute of Organic AgricultureDankook UniversityCheonanRepublic of Korea
  24. 24.Ethiopian Institute of Agricultural Research based at Addis AbabaAddis AbabaEthiopia
  25. 25.Royal University of BhutanLobesaBhutan
  26. 26.Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  27. 27.Bangladesh Agricultural Research Institute BARIJoydebpurBangladesh
  28. 28.Centre for Organic Food and Farming (EPOK)Swedish University of Agricultural SciencesUppsalaSweden
  29. 29.College of Natural Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  30. 30.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations