Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil

Abstract

Long-term application effects of cattle farmyard manure (CM) without and with biodynamic preparations (CMBD) on basal respiration, 0.5 M K2SO4 extractable C and the relationships of microbial biomass C (MBC) estimates by chloroform fumigation extraction (CFE) and substrate-induced respiration (SIR) were evaluated down to 1 m depth. The contents of total N, K2SO4 extractable C and MBC-CFE declined with depth from 0–25 to 90–100 cm by −82, −47 and 86%, respectively. The contents of these three soil properties were always 17% lower in the mineral fertilization (MIN) treatment than in the CM and CMBD treatments. However, these differences were not always significant. The MBC-SIR/CFE ratio varied around 1 and did not show a significant depth gradient, due to the strong layer-to-layer variation within each treatment, although this ratio was generally 25% lower in the subsoil than in the topsoil. The metabolic quotient qCO2, i.e. the ratio of basal respiration to MBC, was positively affected by the MBC-SIR/CFE ratio, soil pH and K2SO4 extractable C and negatively by total N. Long-term application of farmyard manure, especially in the CMBD treatment, resulted in a subsoil microbial community with a more efficient use of SOC and glucose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abele U (1987) Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten. Heft 345, Münster Hiltrup

  2. Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  3. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    CAS  Article  Google Scholar 

  4. Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  5. Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  6. Anderson TH, Domsch KH (2010) Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem 42:2039–2043

    CAS  Article  Google Scholar 

  7. Anderson TH, Joergensen RG (1997) Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol Biochem 29:1033–1042

    CAS  Article  Google Scholar 

  8. Bachinger J (1996) Der Einfluss unterschiedlicher Düngerarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C- und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum vom Winterroggen. Schriftenreihe: Band 7. IBDF, Darmstadt

  9. Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    CAS  Article  Google Scholar 

  10. Blume HP, Stahr K, Leinweber P (2011) Bodenkundliches Praktikum, 3 ed. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  11. Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  12. Brookes PC, Joergensen RG (2006) Microbial biomass measurements by fumigation-extraction. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, pp. 77–83

    Google Scholar 

  13. Chen Y, Chen G, Robinson D, Yang Z, Gu J, Xie J, Fu S, Zhou L, Yang Y (2016) Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biol Biochem 95:233–242

    CAS  Article  Google Scholar 

  14. Dilly O (2006) Ratios of microbial biomass estimates to evaluate microbial physiology in soil. Biol Fertil Soils 42:241–246

    Article  Google Scholar 

  15. Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379

    CAS  Article  Google Scholar 

  16. Eberhardt U, Apel G, Joergensen RG (1996) Effects of direct chloroform-fumigation on suspended cells of 14C and 32P labelled bacteria and fungi. Soil Biol Biochem 28:677–679

    CAS  Article  Google Scholar 

  17. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    CAS  Article  Google Scholar 

  18. Ekelund F, Ronn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481

    CAS  Article  Google Scholar 

  19. Embacher A, Zsolnay A, Gattinger A, Munch JC (2008) The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma 148:63–69

    CAS  Article  Google Scholar 

  20. Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  PubMed  Google Scholar 

  21. FAO-WRB (2014) World reference base for soil resources. In: World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  22. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    CAS  Article  Google Scholar 

  23. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    CAS  Article  PubMed  Google Scholar 

  24. Greenfield LG (1995) Release of microbial cell N during chloroform fumigation. Soil Biol Biochem 21:1235–1236

    Article  Google Scholar 

  25. Gunina A, Dippold M, Glaser B, Kuzyakov Y (2014) Fate of low molecular weight organic substances in an arable soil: from microbial uptake to utilisation and stabilisation. Soil Biol Biochem 77:304–313

    CAS  Article  Google Scholar 

  26. Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  27. Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195

    Article  Google Scholar 

  28. Heinze S, Raupp J, Joergensen RG (2010) Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328:203–215

    CAS  Article  Google Scholar 

  29. Heitkamp F, Raupp J, Ludwig B (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol. Plant Soil 319:259–275

    CAS  Article  Google Scholar 

  30. Höper H (2006) Substrate-induced respiration. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, pp. 84–92

    Google Scholar 

  31. Höper H, Kleefisch B (2001) Untersuchung bodenbiologischer Parameter im Rahmen der Boden-Dauerbeobachtung in Niedersachsen – Bodenbiologische Referenzwerte und Zeitreihen. Arbeitshefte Boden 2001/4, NLfB, Hannover

  32. Hoffmann B, Müller T, Joergensen RG (2010) Carbon dioxide production and oxygen consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand. J Plant Nutr Soil Sci 173:217–223

    CAS  Article  Google Scholar 

  33. Jenkinson DS, Poulton PR, Bryant C (2008) The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments. Eur J Soil Sci 59:391–399

    CAS  Article  Google Scholar 

  34. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k EC value. Soil Biol Biochem 28:25–31

    CAS  Article  Google Scholar 

  35. Joergensen RG (2010) Organic matter and micro-organisms in tropical soils. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer, Berlin, pp. 17–44

    Google Scholar 

  36. Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    CAS  Article  Google Scholar 

  37. Joergensen RG, Olfs HW (1998) The variability between different analytical procedures and laboratories for measuring soil microbial biomass C and biomass N by the fumigation extraction method. Z Pflanzenernähr Bodenk 161:51–58

    CAS  Article  Google Scholar 

  38. Joergensen RG, Raubuch M (2002) Adenylate energy charge of a glucose-treated soil without adding a nitrogen source. Soil Biol Biochem 34:1317–1324

    CAS  Article  Google Scholar 

  39. Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977--2991

  40. Jörgensen RG, Raubuch M, Brandt M (2002) Soil microbial properties down the profile of a black earth buried by colluvium. J Plant Nutr Soil Sci 165:274–280

    Article  Google Scholar 

  41. Joergensen RG, Mäder P, Fließbach A (2010) Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol Fertil Soils 46:303–307

    CAS  Article  Google Scholar 

  42. Joergensen RG, Wu J, Brookes PC (2011) Measuring soil microbial biomass using an automated procedure. Soil Biol Biochem 43:873–876

    CAS  Article  Google Scholar 

  43. Kätterer T, Börjesson G, Kirchmann H (2014) Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric Ecosyst Environ 189:110–118

    Article  Google Scholar 

  44. Kaiser EA, Heinemeyer O (1993) Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol Biochem 25:1649–1655

    Article  Google Scholar 

  45. Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24:675–683

    CAS  Article  Google Scholar 

  46. Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem 52:29–32

    CAS  Article  Google Scholar 

  47. Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Y, Munch JC, Pätzold S, Peth S, Scherer HW, Schloter M, Schneider H, Vanderborght J, Vetterlein D, Walter A, Wiesenberg GLB, Köpke U (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    CAS  Article  Google Scholar 

  48. Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Fungal and bacterial residues and their relationships to the C/N/P/S ratio of soil organic matter and microbial biomass. Geoderma 271:115–123

    CAS  Article  Google Scholar 

  49. Koepf HH, Schaumann W, Haccius M (1990) Bio-dynamic agriculture: an introduction. Anthroposophic Press, Hudson

    Google Scholar 

  50. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    CAS  Article  Google Scholar 

  51. Lavahun MFE, Joergensen RG, Meyer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soils 23:38–42

    Article  Google Scholar 

  52. Liang C, Balser TC (2008) Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA. Geoderma 148:113–119

    CAS  Article  Google Scholar 

  53. Ludwig B, Schulz E, Merbach I, Rethemeyer J, Flessa H (2007) Predictive modelling of the C dynamics for eight variants of the long-term static fertilization experiment in Bad Lauchstädt using the Rothamsted Carbon Model. Eur J Soil Sci 58:1155–1163

    CAS  Article  Google Scholar 

  54. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  55. Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the Broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537

    Article  PubMed  Google Scholar 

  56. Rasul G, Khan AA, Khan KS, Joergensen RG (2009) Immobilization and mineralization of nitrogen in a saline and alkaline soil during microbial use of sugarcane filter cake amended with glucose. Biol Fertil Soils 45:289–296

    CAS  Article  Google Scholar 

  57. Raupp J (2001) Manure fertilisation for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI, Wallingford, pp. 301–308

    Google Scholar 

  58. Raupp J, Oltmanns M (2006a) Farmyard manure, plant based organic fertilisers, inorganic fertiliser—which sustains soil organic matter best? Asp Appl Biol 79:273–276

    Google Scholar 

  59. Raupp J, Oltmanns M (2006b) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Longterm field experiments in organic farming. ISOFAR scientific series. Verlag Dr. Köster, Berlin, pp. 135–155

    Google Scholar 

  60. Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Rousk J, Brookes PC, Bååth E (2010a) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520

    CAS  Article  Google Scholar 

  62. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010b) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  63. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    CAS  Article  Google Scholar 

  64. Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    CAS  Article  Google Scholar 

  65. Scheller E (2013) Grundzüge einer Pflanzenernährung des ökologischen Landbaus. - Ein Fragment. Verlag Lebendige Erde, Darmstadt

    Google Scholar 

  66. Sradnick A, Oltmanns M, Raupp J, Joergensen RG (2014) Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma 226-227:79–84

    CAS  Article  Google Scholar 

  67. Struecker J, Joergensen RG (2015) Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biol Biochem 91:310–317

    CAS  Article  Google Scholar 

  68. Sun HY, Koal P, Gerl G, Schroll R, Joergensen RG,. Munch JC (2016) Water extractable organic matter and its fluorescence fractions in response to minimum tillage and organic farming in a Cambisol. Geoderma (submitted)

  69. Yang FY, Li GZ, Zhang DE, Christie P, Li XL, Gai JP (2010) Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol Fertil Soils 46:435–443

    Article  Google Scholar 

  70. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    CAS  Article  Google Scholar 

  71. West AW, Sparling GP (1986) Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of different water contents. J Microbiol Meth 5:177–189

    CAS  Article  Google Scholar 

  72. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    CAS  Article  Google Scholar 

  73. Zhang M, He Z, Zhao A, Zhang H, Endale DM, Schomberg HH (2011) Water-extractable soil organic carbon and nitrogen affected by tillage and manure application. Soil Sci 176:307–312

    CAS  Article  Google Scholar 

  74. Zmora-Nahum S, Hadar Y, Chen Y (2007) Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biol Biochem 39:1263–1276

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The technical assistance of Gabriele Dormann is highly appreciated. This project was supported by a grant from the Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture’ of the German Research Foundation (DFG).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer Georg Joergensen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sradnick, A., Oltmanns, M., Raupp, J. et al. Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil. Org. Agr. 8, 29–38 (2018). https://doi.org/10.1007/s13165-016-0170-6

Download citation

Keywords

  • Cattle farmyard manure
  • Biodynamic preparations
  • Basal respiration
  • Chloroform fumigation extraction
  • Substrate-induced respiration
  • K2SO4 extractable C