Advertisement

Organic Agriculture

, Volume 4, Issue 3, pp 233–242 | Cite as

Comparison of zero concentrate supplementation with different quantities of concentrates in terms of production, animal health, and profitability of organic dairy farms in Austria

  • P. ErtlEmail author
  • W. Knaus
  • A. Steinwidder
Article

Abstract

Feeding grain-based concentrates to dairy cows is linked to a number of negative aspects, such as animal health concerns and ethical concerns regarding the feeding of food edible for humans to ruminants. This study investigated farms where no concentrates have been fed to dairy cows for a period of several years. Basic data from eight Austrian organic dairy farms where no concentrates were fed (C0) was collected for the years 2010 and 2011. This data was compared with results from 131 and 140 Austrian organic dairy farms included in a federal program (milk production working group) for the years 2010 and 2011, respectively. These farms were divided into three groups, depending on the amount of concentrates (fresh matter basis) fed per cow annually (WG1, up to 975 kg; WG2, 976–1400 kg; WG3, more than 1400 kg). Energy-corrected milk yield increased from 5093 kg in C0 to 6828 kg in WG3. Calculated milk yield per cow from forage, however, decreased from 5083 kg (C0) to 4412 kg (WG3). Veterinary costs were lower on farms without concentrate supplementation. Insemination index and non-return rate did not differ between groups. The calving interval, however, was prolonged in C0 when compared to WG3 (410 for C0 and 388 days for WG3, P = 0.026). Although milk yield was lowest in C0, no differences in the marginal income (revenues minus direct costs) per cow could be found. In conclusion, this data showed that animal health and profitability were not negatively affected on farms without concentrate supplementation.

Keywords

Dairy cow Organic Concentrates Low input Animal nutrition Animal health 

Notes

Acknowledgments

The authors want to thank the Austrian milk production working group for providing data and Kathleen Knaus for the editing assistance.

References

  1. Bauman DE, Capper JL (2011) Sustainability and dairy production: challenges and opportunities. Paper presented at the 73rd Cornell Nutrition Conference for Feed Manufacturers, Ithaca, New York, USAGoogle Scholar
  2. Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp RF (2003) Genetic relationships among body condition score, body weight, milk yield, and fertility in dairy cows. J Dairy Sci 86(6):2193–2204. doi: 10.3168/jds.S0022-0302(03)73809-0 PubMedCrossRefGoogle Scholar
  3. Bielfeldt JC, Badertscher R, Tolle KH, Krieter J (2004) Influence of systematic effects on fertility traits in Swiss Brown cows. Arch Tierzucht 47(6):537–549Google Scholar
  4. BMLFUW (2011) Produktion und Vermarktung von Bio-Milch in Österreich und Europa. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, AustriaGoogle Scholar
  5. BMLFUW (2012) Milchproduktion 2011. Ergebnisse und Konsequenzen der Betriebszweigauswertung aus den Arbeitskreisen Milchproduktion in Österreich. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, AustriaGoogle Scholar
  6. BMLFUW (2013) Grüner Bericht : Bericht über die Lage der österreichischen Landwirtschaft. Bundesministerium für Land- und Forstwirtschaft, WienGoogle Scholar
  7. Bradford GE (1999) Contributions of animal agriculture to meeting global human food demand. Livest Prod Sci 59(2–3):95–112. doi: 10.1016/S0301-6226(99)00019-6 CrossRefGoogle Scholar
  8. Caccamo M, Veerkamp RF, Licitra G, Petriglieri R, La Terra F, Pozzebon A, Ferguson JD (2012) Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level. J Dairy Sci 95(10):6171–6183. doi: 10.3168/jds.2011-4148 PubMedCrossRefGoogle Scholar
  9. Capper JL, Bauman DE (2013) The role of productivity in improving the environmental sustainability of ruminant production systems. Annu Rev Anim Biosci 1:469–489. doi: 10.1146/annurev-animal-031412-103727 CrossRefGoogle Scholar
  10. Collard BL, Boettcher PJ, Dekkers JCM, Petitclerc D, Schaeffer LR (2000) Relationships between energy balance and health traits of dairy cattle in early lactation. J Dairy Sci 83(11):2683–2690PubMedCrossRefGoogle Scholar
  11. Coulon JB, Remond B (1991) Variations in milk output and milk protein-content in response to the level of energy supply to the dairy-cow: a review. Livest Prod Sci 29(1):31–47. doi: 10.1016/0301-6226(91)90118-A CrossRefGoogle Scholar
  12. Distl O, Wurm A, Glibotic A, Brem G, Krausslich H (1989) Analysis of relationships between veterinary recorded production diseases and milk-production in dairy cows. Livest Prod Sci 23(1–2):67–78. doi: 10.1016/0301-6226(89)90006-7 CrossRefGoogle Scholar
  13. Dohoo IR, Meek AH (1982) Somatic cell counts in bovine milk. Can Vet J 23(4):119–125PubMedPubMedCentralGoogle Scholar
  14. Donker JD, Macclure FA (1982) Responses of milking cows to amounts of concentrate in rations. J Dairy Sci 65(7):1189–1204CrossRefGoogle Scholar
  15. Eastridge ML (2006) Major advances in applied dairy cattle nutrition. J Dairy Sci 89(4):1311–1323PubMedCrossRefGoogle Scholar
  16. Eilers U (2013) Weniger Kraftfutter, mehr Erfolg - Milch ökologisch und mit wenig Kraftfutter zu erzeugen bietet vielerlei Vorteile. Der kritische Agrarbericht 2013. Kassel, Hamm, GermanyGoogle Scholar
  17. Faverdin P, Dulphy JP, Coulon JB, Verite R, Garel JP, Rouel J, Marquis B (1991) Substitution of roughage by concentrates for dairy cows. Livest Prod Sci 27(2–3):137–156. doi: 10.1016/0301-6226(91)90092-5 CrossRefGoogle Scholar
  18. Fleischer P, Metzner M, Beyerbach M, Hoedemaker M, Klee W (2001) The relationship between milk yield and the incidence of some diseases in dairy cows. J Dairy Sci 84(9):2025–2035PubMedCrossRefGoogle Scholar
  19. Fürst C (2006) Züchterische Aspekte der Fruchtbarkeit. Paper presented at the Seminar des Ausschusses für Genetik der ZAR, Salzburg, Austria, 16.03.2006Google Scholar
  20. Gill M (2013) Converting feed into human food: the multiple dimensions of efficiency. Paper presented at the FAO Symposium, Banghok, Thailand, 27.11.2012Google Scholar
  21. Gruber L (1998) Einfluss der Qualität und Zusammensetzung des Grundfutters und des Kraftfutterniveaus auf die Futteraufnahme, Leistung und Nährstoffausscheidung von Milchkühen. Dissertation, University of Natural Resources and Life Sciences, Wien, AustriaGoogle Scholar
  22. Gruber L, Steinwidder A, Stefanon B, Steiner B, Steinwender R (1999) Influence of grassland management in Alpine regions and concentrate level on N excretion and milk yield of dairy cows. Livest Prod Sci 61(2–3):155–170. doi: 10.1016/S0301-6226(99)00065-2 CrossRefGoogle Scholar
  23. Haiger A, Knaus W (2010) Vergleich von Fleckvieh und Holstein Friesian in der Milch- und Fleischleistung. 1. Mitteilung: Milchleistungsvergleich ohne Kraftfutter. Zuchtungskunde 82(2):131–143Google Scholar
  24. Haiger A, Sölkner J (1995) Der Einfluss verschiedener Futterniveaus auf die Lebensleistung kombinierter und milchbetonter Kühe. Zuchtungskunde 67:263–273Google Scholar
  25. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457CrossRefGoogle Scholar
  26. Horn M, Knaus W, Kirner L, Steinwidder A (2012) Economic evaluation of longevity in organic dairy cows. Org Agr 2:127–143CrossRefGoogle Scholar
  27. Inchaisri C, Jorritsma R, Vos PLAM, van der Weijden GC, Hogeveen H (2010) Economic consequences of reproductive performance in dairy cattle. Theriogenology 74(5):835–846. doi: 10.1016/j.theriogenology.2010.04.008 PubMedCrossRefGoogle Scholar
  28. Jaster K (2004) Influence of milk performance on the profitability of milk production. Zuchtungskunde 76(6):449–456Google Scholar
  29. Kennedy J, Dillon P, O'Sullivan K, Buckley F, Rath M (2003) The effect of genetic merit for milk production and concentrate feeding level on the reproductive performance of Holstein-Friesian cows in a grass-based system. Anim Sci 76:297–308Google Scholar
  30. Kleen JL, Hooijer GA, Rehage J, Noordhuizen JPTM (2003) Subacute ruminal acidosis (SARA): a review. J Vet Med A 50(8):406–414. doi: 10.1046/j.1439-0442.2003.00569.x CrossRefGoogle Scholar
  31. Knaus W (2009) Dairy cows trapped between performance demands and adaptability. J Sci Food Agr 89(7):1107–1114. doi: 10.1002/Jsfa.3575 CrossRefGoogle Scholar
  32. Knaus W (2013a) Food security and dairy cow feeding: the necessity for a paradigm shift. Agric Conspec Sci 78(3):149–152Google Scholar
  33. Knaus W (2013b) Re-thinking dairy cow feeding in light of food security. AgroLife Sci J 2(1):36–40Google Scholar
  34. Knaus W, Steinwidder A, Zollitsch W (2001) Energy and protein balance in organic dairy cow nutrition model calculations based on EU regulations. In: Hovi M, Baars T (eds) Breeding and feeding for animal health and welfare in organic livestock systems, Wagening, The Netherlands, 2001. Network for Animal Health and Welfare in Organic Agriculture (NAHWOA):141–154Google Scholar
  35. Kolver ES, Muller LD (1998) Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J Dairy Sci 81(5):1403–1411. doi: 10.3168/jds.S0022-0302(98)75704-2 PubMedCrossRefGoogle Scholar
  36. Krämer E (1984) Laktationsverlauf und Milcheiweißgehalt - Eine Analyse von Ergebnissen der Milchleistungskontrolle unter besonderer Berücksichtigung von Umwelteinflüssen mit Einfluss auf die Nährsfoffversorgung. Justus-Liebig-University, Gießen, GermanyGoogle Scholar
  37. Lean IJ, Westwood CT, Golder HM, Vermunt JJ (2013) Impact of nutrition on lameness and claw health in cattle. Livest Sci 156(1–3):71–87. doi: 10.1016/j.livsci.2013.06.006 CrossRefGoogle Scholar
  38. Lucy MC (2001) ADSA Foundation Scholar Award. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 84(6):1277–1293PubMedCrossRefGoogle Scholar
  39. Nebel RL, McGilliard ML (1993) Interactions of high milk yield and reproductive performance in dairy cows. J Dairy Sci 76(10):3257–3268PubMedCrossRefGoogle Scholar
  40. Notz C, Alföldi T (2012) Feed no food - Den Kraftfuttereinsatz überdenken. bioaktuell - Das Magazin der Biobewegung, vol 4/12, Bio SuisseGoogle Scholar
  41. Olori VE, Brotherstone S, Hill WG, McGuirk BJ (1999) Fit of standard models of the lactation curve to weekly records of milk production of cows in a single herd. Livest Prod Sci 58(1):55–63. doi: 10.1016/S0301-6226(98)00194-8 CrossRefGoogle Scholar
  42. Oltenacu PA, Broom DM (2010) The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim Welfare 19:39–49Google Scholar
  43. Oltjen JW, Beckett JL (1996) Role of ruminant livestock in sustainable agricultural systems. J Anim Sci 74(6):1406–1409PubMedGoogle Scholar
  44. Pryce JE, Royal MD, Garnsworthy PC, Mao IL (2004) Fertility in the high-producing dairy cow. Livest Prod Sci 86(1–3):125–135. doi: 10.1016/S0301-6226(03)00145-3 CrossRefGoogle Scholar
  45. Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56(1):15–33. doi: 10.1016/S0301-6226(98)00147-X CrossRefGoogle Scholar
  46. Sehested J, Kristensen T, Soegaard K (2003) Effect of concentrate supplementation level on production, health and efficiency in an organic dairy herd. Livest Prod Sci 80(1–2):153–165. doi: 10.1016/S0301-6226(02)00317-2 CrossRefGoogle Scholar
  47. Silvestre AM, Martins AM, Santos VA, Ginja MM, Colaco JA (2009) Lactation curves for milk, fat and protein in dairy cows: a full approach. Livest Sci 122(2–3):308–313. doi: 10.1016/j.livsci.2008.09.017 CrossRefGoogle Scholar
  48. Snijders SEM, Dillon PG, O'Farrell KJ, Diskin M, Wylie ARG, O'Callaghan D, Rath M, Boland MP (2001) Genetic merit for milk production and reproductive success in dairy cows. Anim Reprod Sci 65(1–2):17–31. doi: 10.1016/S0378-4320(00)00217-7 PubMedCrossRefGoogle Scholar
  49. Spiekers H, Nußbaum H, Potthast V (2009) Erfolgreiche Milchviehfütterung, vol 5. DLG-Verlag, Frankfurt am MainGoogle Scholar
  50. Steinwidder A, Starz W, Gotthardt A, Pfister R, Danner M, Schröcker R, Rudlsdorfer S, Pöckl E, Schmied V (2013) Entwicklung betriebsangepasster Strategien zur Reduktion des Kraftfuttereinsatzes in Bio-Milchviehbetrieben. Paper presented at the Fachtagung für biologsiche Landwirtschaft - Grünlandbasierte BIO-Rinderhaltung, Ergebnisse aus Forschung und Umsetzung, Irdning, Austria, 07.11.2013Google Scholar
  51. Strandberg E (1992) Lifetime performance in dairy-cattle: definition of traits and influence of systematic environmental factors. Acta Agr Scand a-An 42(2):71–81Google Scholar
  52. VandeHaar MJ, St-Pierre N (2006) Major advances in nutrition: relevance to the sustainability of the dairy industry. J Dairy Sci 89(4):1280–1291PubMedCrossRefGoogle Scholar
  53. Wilkinson JM (2011) Re-defining efficiency of feed use by livestock. Animal 5(7):1014–1022. doi: 10.1017/S175173111100005x PubMedCrossRefGoogle Scholar
  54. Wilson P (2011) Decomposing variation in dairy profitability: the impact of output, inputs, prices, labour and management. J Agr Sci 149:507–517. doi: 10.1017/S0021859610001176 CrossRefGoogle Scholar
  55. ZAR (2013) Die österreichische Rinderzucht 2012. Zentrale Arbeitsgemeinschaft österreichischer Rinderzüchter, Wien, AustriaGoogle Scholar
  56. Zuchtdata (2012) Jahresbericht Zuchtdata. Zuchtdata EDV Dienstleistungen GmbH., Wien, AustriaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Livestock Sciences, Department of Sustainable Agricultural SystemsUniversity of Natural Resources and Life SciencesViennaAustria
  2. 2.Agricultural Research and Education Centre Raumberg-GumpensteinInstitute of Organic Farming and Farm Animal BiodiversityPürgg-TrautenfelsAustria

Personalised recommendations