Skip to main content

Nowhere and Everywhere: The Causal Origin of Voluntary Action

Abstract

The idea that intentions make the difference between voluntary and non-voluntary behaviors is simple and intuitive. At the same time, we lack an understanding of how voluntary actions actually come about, and the unquestioned appeal to intentions as discrete causes of actions offers little if anything in the way of an answer. We cite evidence suggesting that the origin of actions varies depending on context and effector, and argue that actions emerge from a causal web in the brain, rather than a central origin of intentional action. We argue that this causal web need not be confined to the central nervous system, and that proprioceptive feedback might play a counterintuitive role in the decision process. Finally we argue that the complex and dynamic origins of voluntary action and their interplay with the brain’s propensity to predict the immediate future are better studied using a dynamical systems approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    Although we have to keep in mind that activating a specific genetically-isolated sub-population of neurons may or may not correspond to something that ever happens in the life of the animal. Activating neurons through normal sensory pathways may yield more reliable neuro-behavioral mappings. However, other evidence of dynamic functional maps comes from optical imaging studies of spatial attention and optic flow processing in parietal cortex of behaving monkeys (Raffi 2005; Raffi and Siegel 2007).

  2. 2.

    One might object by saying that the firing of canonical neurons is itself a consequence of a cognitive action plan, or an intention. However, the fact that canonical neurons respond very fast—100 ms after stimulus onset, (Murata et al. 1997)— and receive input relatively directly from visual areas—from IT through parietal area AIP (Borra et al. 2008) or from STP through PFG (Rozzi et al. 2006)—makes this suggestion highly unlikely.

  3. 3.

    Graziano and colleagues find that although these chunks of behavior were complex—they consisted, for instance in a an action sequence of reaching towards an object, grasping the object, bringing it to the mouth, and opening the mouth—they also needed adaptation to fit the current context. While this is a form of action specification, it is a form that is incompatible with the traditional hierarchy in which details are only added at the lowest levels. In this case details are already present, and are adapted to fit the specific context.

  4. 4.

    In robotics, Brooks (1986, 1991) suggested a similar control structure, based on several autonomous control layers. Higher layers were able to modulate the activity of lower layers, but these lower layers were by themselves also capable of producing behavior. This alternative structure proved to cope with challenging environments much better than its contemporaries based on a top-down structure (Nilsson 1984).

  5. 5.

    Trials on which subjects were interrupted just as they were about to move were excluded from the analysis, and the distribution of slow and fast responses were the same early or late in the trial, thus ruling out the two most obvious alternative accounts (Schurger et al. 2012).

  6. 6.

    Of course, even if our conjecture is correct (and it remains speculative), feedback from the body may exert only a small modulatory influence in most contexts: i.e. the “central-decision” assumption may still be valid to a first approximation, much like Newtonian dynamics in physics; relativity theory offers a fuller, subtler explanation, but very many phenomena can be accounted for without it.

References

  1. Albantakis, L., and G. Deco. 2011. Changes of mind in an attractor network of decision-making. PLoS Computational Biology 7(6): e1002086. doi:10.1371/journal.pcbi.1002086.

    Article  Google Scholar 

  2. Ames, K.C., S.I. Ryu, and K.V. Shenoy. 2014. Neural dynamics of reaching following incorrect or absent motor preparation. Neuron 81(2): 438–451. doi:10.1016/j.neuron.2013.11.003.

    Article  Google Scholar 

  3. Bai, O., V. Rathi, P. Lin, D. Huang, H. Battapady, D.-Y. Fei, et al. 2011. Prediction of human voluntary movement before it occurs. Clinical Neurophysiology 122(2): 364–372. doi:10.1016/j.clinph.2010.07.010.

    Article  Google Scholar 

  4. Beer, R. 2000. Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3): 91–99.

    Article  Google Scholar 

  5. Beer, R. 2003. The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4): 209.

    Article  Google Scholar 

  6. Bengson, J.J., T.A. Kelley, X. Zhang, J.-L. Wang, and G.R. Mangun. 2014. Spontaneous neural fluctuations predict decisions to attend. Journal of Cognitive Neuroscience 47: 1–7. doi:10.2307/2531248.

    Google Scholar 

  7. Blakemore, S.-J., D.M. Wolpert, and C.D. Frith. 2002. Abnormalities in the awareness of action. Trends in Cognitive Sciences 6(6): 237–242. doi:10.1016/S1364-6613(02)01907-1.

    Article  Google Scholar 

  8. Bode, S., A.H. He, C.S. Soon, R. Trampel, R. Turner, and J.-D. Haynes. 2011. Tracking the unconscious generation of free decisions using uitra-high field fMRI. PLoS One 6(6): e21612. doi:10.1371/journal.pone.0021612.

    Article  Google Scholar 

  9. Bonini, L., M. Maranesi, A. Livi, L. Fogassi, and G. Rizzolatti. 2014. Space-dependent representation of objects and other’s action in monkey ventral premotor grasping neurons. Journal of Neuroscience 34(11): 4108–4119. doi:10.1523/JNEUROSCI. 4187-13.2014.

    Article  Google Scholar 

  10. Borra, E., A. Belmalih, R. Calzavara, M. Gerbella, A. Murata, S. Rozzi, and G. Luppino. 2008. Cortical connections of the macaque Anterior Intraparietal (AIP) area. Cerebral Cortex 18(5): 1094–1111.

    Article  Google Scholar 

  11. Brass, M., and P. Haggard. 2008. The what, when, whether model of intentional action. The Neuroscientist 14(4): 319–325. doi:10.1177/1073858408317417.

    Article  Google Scholar 

  12. Bratman, M.E. 1981. Intention and means-end reasoning. The Philosophical Review 90(2): 252–265.

    Article  Google Scholar 

  13. Bratman, M.E. 1987. Intention, plans, and practical reason. Cambridge: Harvard University Press.

    Google Scholar 

  14. Brooks, R. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1): 14–23.

    Article  Google Scholar 

  15. Brooks, R. 1991. Intelligence without representation. Artificial Intelligence 47: 139–159.

    Article  Google Scholar 

  16. Buhrmann, T., E.A. Di Paolo, and X. Barandiaran. 2013. A dynamical systems account of sensorimotor contingencies. Frontiers in Psychology 4: 285. doi:10.3389/fpsyg.2013.00285.

    Article  Google Scholar 

  17. Carota, F., A. Posada, S. Harquel, C. Delpuech, O. Bertrand, and A. Sirigu. 2010. Neural dynamics of the intention to speak. Cerebral Cortex 20(8): 1891–1897. doi:10.1093/cercor/bhp255.

    Article  Google Scholar 

  18. Caruana, F., S. Uithol, G. Cantalupo, I. Sartori, Russo, G. Lo, and P. Avanzini. 2014. How action selection can be embodied: Intracranial gamma band recording shows response competition during the Eriksen flankers test. Frontiers in Human Neuroscience 8(668): 1–9. doi:10.3389/fnhum.2014.00668.

    Google Scholar 

  19. Chen, R., Z. Yaseen, L.G. Cohen, and M. Hallett. 1998. Time course of corticospinal excitability in reaction time and self-paced movements. Annals of Neurology 44(3): 317–325. doi:10.1002/ana.410440306.

    Article  Google Scholar 

  20. Churchland, M.M. 2006. Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience 26(14): 3697–3712. doi:10.1523/JNEUROSCI. 3762-05.2006.

    Article  Google Scholar 

  21. Churchland, M.M., J.P. Cunningham, M.T. Kaufman, S.I. Ryu, and K.V. Shenoy. 2010. Cortical preparatory activity: Representation of movement or first cog in a dynamical machine? Neuron 68(3): 387–400. doi:10.1016/j.neuron.2010.09.015.

    Article  Google Scholar 

  22. Churchland, M.M., J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu, and K.V. Shenoy. 2012. Neural population dynamics during reaching. Nature. doi:10.1038/nature11129.

    Google Scholar 

  23. Cisek, P. 2007. Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B-Biological Sciences 362(1485): 1585–1599. doi:10.1146/annurev.neuro.20.1.25.

    Article  Google Scholar 

  24. Cisek, P., and J.F. Kalaska. 2010. Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33(1): 269–298. doi:10.1146/annurev.neuro.051508.135409.

    Article  Google Scholar 

  25. Deco, G., and R. Romo. 2008. The role of fluctuations in perception. Trends in Neurosciences 31(11): 591–598. doi:10.1016/j.tins.2008.08.007.

    Article  Google Scholar 

  26. Dennett, D.C. 2003. Freedom evolves. New York: Viking.

    Google Scholar 

  27. Dennett, D.C., and M. Kinsbourne. 1992. Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences 15: 183–247.

    Article  Google Scholar 

  28. Desmurget, M., and A. Sirigu. 2009. A parietal-premotor network for movement intention and motor awareness. Trends in Cognitive Sciences 13(10): 411–419.

    Article  Google Scholar 

  29. Desmurget, M., K.T. Reilly, N. Richard, A. Szathmari, C. Mottolese, and A. Sirigu. 2009. Movement intention after parietal cortex stimulation in humans. Science 324(5928): 811–813. doi:10.1126/science.1169896.

    Article  Google Scholar 

  30. Dimitriou, M., and B.B. Edin. 2010. Human muscle spindles act as forward sensory models. Current Biology 20(19): 1763–1767. doi:10.1016/j.cub.2010.08.049.

    Article  Google Scholar 

  31. Domnisoru, C., A.A. Kinkhabwala, and D.W. Tank. 2013. Membrane potential dynamics of grid cells. Nature 495(7440): 199–204. doi:10.1038/nature11973.

    Article  Google Scholar 

  32. Dum, R.P., and P.L. Strick. 1991. The origin of corticospinal projections from the premotor areas in the frontal lobe. The Journal of Neuroscience 11(3): 667–689.

    Google Scholar 

  33. Fogassi, L., P.F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti. 2005. Parietal lobe: From action organization to intention understanding. Science 308(5722): 662–666.

    Article  Google Scholar 

  34. Fried, I., R. Mukamel, and G. Kreiman. 2011. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69(3): 548–562. doi:10.1016/j.neuron.2010.11.045.

    Article  Google Scholar 

  35. Galea, M.P., and I. Darian-Smith. 1994. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cerebral Cortex 4(2): 166–194. doi:10.1093/cercor/4.2.166.

    Article  Google Scholar 

  36. Garcia-Perez, E., A. Mazzoni, and V. Torre. 2007. Spontneous electrical activity and behavior in the the leech Hirudo medicinalis. Frontiers in Integrative Neuroscience 1(8): 1–9.

  37. Gold, J.I., and M.N. Shadlen. 2007. The neural basis of decision making. Annual Review of Neuroscience 30(1): 535–574. doi:10.1146/annurev.neuro.29.051605.113038.

    Article  Google Scholar 

  38. Gomes, G. 1999. Volition and the readiness potential. Journal of Consciousness Studies 25(2): 157–181.

    Google Scholar 

  39. Grafton, S.T., and A.F.C. Hamilton. 2007. Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science 26(4): 590–616.

    Article  Google Scholar 

  40. Graziano, M.S.A., and T.N.S. Aflalo. 2007. Mapping behavioral repertoire onto the cortex. Neuron 56(2): 239–251.

    Article  Google Scholar 

  41. Graziano, M.S.A., C. Taylor, and T. Moore. 2002. Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5): 841–851.

    Article  Google Scholar 

  42. Haggard, P. 2005. Conscious intention and motor cognition. Trends in Cognitive Sciences 9(6): 290–295.

    Article  Google Scholar 

  43. Haggard, P. 2008. Human volition: Towards a neuroscience of will. Nature Reviews. Neuroscience 9(12): 934–946. doi:10.1038/nrn2497.

    Article  Google Scholar 

  44. Haggard, P. 2011. Decision time for free will. Neuron 69(3): 404–406. doi:10.1016/j.neuron.2011.01.028.

    Article  Google Scholar 

  45. Haggard, P., and M. Eimer. 1999. On the relation between brain potentials and the awareness of voluntary movements. Experimental Brain Research 126(1): 128–133.

    Article  Google Scholar 

  46. Hamilton, A.F.C., and S.T. Grafton. 2007. The motor hierarchy: From kinematics to goals and intentions. In Attention & performance 22. Sensorimotor foundations of higher cognition attention and performance, ed. P. Haggard, Y. Rossetti, and M. Kawato, 381–408. Oxford: Oxford University Press.

    Google Scholar 

  47. Hasson, U. 2004. Intersubject synchronization of cortical activity during natural vision. Science 303(5664): 1634–1640. doi:10.1126/science.1089506.

    Article  Google Scholar 

  48. Haxby, J., M. Gobbini, M. Furey, A. Ishai, J. Schouten, and P. Pietrini. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539): 2425–2429.

    Article  Google Scholar 

  49. Haynes, J.-D. 2011. Decoding and predicting intentions. Annals of the New York Academy of Sciences 1224(1): 9–21. doi:10.1111/j.1749-6632.2011.05994.x.

    Article  Google Scholar 

  50. He, S.Q., R.P. Dum, and P.L. Strick. 1993. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. The Journal of Neuroscience 13(3): 952–980.

  51. Hutto, D.D., and E. Myin. 2013. Radicalizing enactivism: Basic minds without content. Cambridge: MIT Press.

    Google Scholar 

  52. Jezek, K., E.J. Henriksen, A. Treves, E.I. Moser, and M.-B. Moser. 2011. Theta-paced flickering between place-cell maps in the hippocampus. Nature 478(7368): 246–249. doi:10.1038/nature10439.

    Article  Google Scholar 

  53. Jo, H.-G., T. Hinterberger, M. Wittmann, T.L. Borghardt, and S. Schmidt. 2013. Spontaneous EEG fluctuations determine the readiness potential: Is preconscious brain activation a preparation process to move? Experimental Brain Research 231(4): 495–500. doi:10.1007/s00221-013-3713-z.

    Article  Google Scholar 

  54. Kagaya, K., and M. Takahata. 2011. Readiness discharge for spontaneous initiation of walking in crayfish. The Journal of Neuroscience 30(4): 1348–1362.

  55. Kaufman, M.T., M.M. Churchland, S.I. Ryu, and K.V. Shenoy. 2014. Cortical activity in the null space: Permitting preparation without movement. Nature Neuroscience. doi:10.1038/nn.3643.

    Google Scholar 

  56. Keller, I., and H. Heckhausen. 1990. Readiness potentials preceding spontaneous motor acts: Voluntary vs. involuntary control. Electroencephalography and Clinical Neurophysiology 76(4): 351–361. doi:10.1016/0013-4694(90)90036-J.

    Article  Google Scholar 

  57. Kelso, J.A.S. 1995. Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press.

    Google Scholar 

  58. Kiebel, S.J., J. Daunizeau, and K.J. Friston. 2008. A hierarchy of time-scales and the brain. PLoS Computational Biology 4(11): e1000209. doi:10.1371/journal.pcbi.1000209.

    Article  Google Scholar 

  59. Kilner, J.M. 2011. More than one pathway to action understanding. Trends in Cognitive Sciences 15(8): 352–357. doi:10.1016/j.tics.2011.06.005.

    Article  Google Scholar 

  60. Kistler, M. 2006. La causalité comme transfert et dépendance nomique. Philosophie 89(1): 53–77. doi:10.3917/philo.089.0053.

    Article  Google Scholar 

  61. Knobe, J. 2006. The concept of intentional action: A case study in the uses of folk psychology. Philosophical Studies 130(2): 203–231.

    Article  Google Scholar 

  62. Koechlin, E., and C. Summerfield. 2007. An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences 11(6): 229–235.

    Article  Google Scholar 

  63. Kornhuber, H.H., and L.D. Deecke. 1965. Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archiv Für Die Gesamte Physiologie Des Menschen Und Der Tiere 284(1): 1–17. doi:10.1007/BF00412364.

    Article  Google Scholar 

  64. Krakauer, J.W., Z.M. Pine, M.-F. Ghilardi, and C. Ghez. 2000. Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience 20(23): 8916–8924.

    Google Scholar 

  65. Krieghoff, V., F. Waszak, W. Prinz, and M. Brass. 2011. Neural and behavioral correlates of intentional actions. Neuropsychologia 49(5): 767–776. doi:10.1016/j.neuropsychologia.2011.01.025.

    Article  Google Scholar 

  66. Lafargue, G., and H. Duffau. 2008. Awareness of intending to act following parietal cortex resection. Neuropsychologia 46(11): 2662–2667. doi:10.1016/j.neuropsychologia.2008.04.019.

    Article  Google Scholar 

  67. Lau, H.C., R.D.D. Rogers, P. Haggard, and R.E. Passingham. 2004. Attention to intention. Science 303(5661): 1208–1210. doi:10.1126/science.1090973.

    Article  Google Scholar 

  68. Lew, E., Chavarriaga, R., Silvoni, S., and J.D.R. Millán. 2012. Detection of self-paced reaching movement intention from EEG signals. Frontiers in Neuroengineering 5(13). doi:10.3389/fneng.2012.00013

  69. Libet, B., C.A. Gleason, E.W. Wright, and D.K. Pearl. 1983. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): The unconscious initiation of a freely voluntary act. Brain 106(3): 623–642. doi:10.1093/brain/106.3.623.

    Article  Google Scholar 

  70. London, M., et al. 2010. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466(7302): 123–127.

    Article  Google Scholar 

  71. Machens, C.K. 2005. Flexible control of mutual inhibition: A neural model of two-interval discrimination. Science 307(5712): 1121–1124. doi:10.1126/science.1104171.

    Article  Google Scholar 

  72. Maier, M.A., P.A. Kirkwood, T. Brochier, and R.N. Lemon. 2013. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey. Journal of Neurophysiology 09(12): 2982–2998.

  73. Mason, S.G., and G.E. Birch. 2000. A brain-controlled switch for asynchronous control applications. IEEE Transactions on Bio-Medical Engineering 47(10): 1297–1307. doi:10.1109/10.871402.

    Article  Google Scholar 

  74. Mazzoni, A., et al. (2007). On the Dynamics of the Spontaneous Activity in Neuronal Networks. PLoS ONE 2(5): e439.

  75. McFarland, D. 1989. Goals, no-goals and own goals. In Goals, no-goals and own goals: A debate on goal-directed and international behaviour, ed. A. Montefiore and D. Noble, 39–57. London: Unwin Hyman.

    Google Scholar 

  76. Miller, J., P. Shepherdson, and J.A. Trevena. 2011. Effects of clock monitoring on electroencephalographic activity: Is unconscious movement initiation an artifact of the clock? Psychological Science 22(1): 103–109. doi:10.1177/0956797610391100.

    Article  Google Scholar 

  77. Murata, A., L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti. 1997. Object representation in the ventral premotor cortex (Area F5) of the monkey. Journal of Neurophysiology 78(4): 2226–2230.

    Google Scholar 

  78. Nilsson, N. 1984. Shakey The Robot, Technical Note 323

  79. Pacherie, E. 2008. The phenomenology of action: A conceptual framework. Cognition 107(1): 179–217.

    Article  Google Scholar 

  80. Pacherie, E., and P. Haggard. 2010. What are intentions? In Conscious will and responsibility. A tribute to benjamin libet, ed. W. Sinnott-Armstrong and L. Nadel, 70–84. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  81. Peters, A.J., S.X. Chen, and T. Komiyama. 2014. Emergence of reproducible spatiotemporal activity during motor learning. Nature. doi:10.1038/nature13235.

    Google Scholar 

  82. Quian Quiroga, R., L.H. Snyder, A.P. Batista, H. Cui, and R.A. Andersen. 2006. Movement intention is better predicted than attention in the posterior parietal cortex. Journal of Neuroscience 26(13): 3615–3620. doi:10.1523/JNEUROSCI. 3468-05.2006.

    Article  Google Scholar 

  83. Raffi, M. 2005. Functional architecture of spatial attention in the parietal cortex of the behaving monkey. Journal of Neuroscience 25(21): 5171–5186. doi:10.1523/JNEUROSCI. 5201-04.2005.

    Article  Google Scholar 

  84. Raffi, M., and R.M. Siegel. 2007. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS ONE 2(2): e200.

  85. Rizzolatti, G., and G. Luppino. 2001. The cortical motor system. Neuron 31(6): 889–901. doi:10.1016/S0896-6273(01)00423-8.

    Article  Google Scholar 

  86. Rizzolatti, G., Gentilucci, M., Camarda, R. M., Gallese, V., Luppino, G., Matelli, M., and L. Fogassi. 1990. Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a?). Experimental Brain Research 82(2). doi:10.1007/BF00231253

  87. Rozzi, S., R. Calzavara, A. Belmalih, E. Borra, G.G. Gregoriou, M. Matelli, and G. Luppino. 2006. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cerebral Cortex 16(10): 1389–1417.

    Article  Google Scholar 

  88. Schurger, A., F. Pereira, A. Treisman, and J.D. Cohen. 2010. Reproducibility distinguishes conscious from nonconscious neural representations. Science 327(5961): 97–99. doi:10.1126/science.1180029.

    Article  Google Scholar 

  89. Schurger, A.A., J.D. Sitt, and S.S. Dehaene. 2012. An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of the National Academy of Sciences of the United States of America 109(42): E2904–E2913. doi:10.1073/pnas.1210467109.

    Article  Google Scholar 

  90. Searle, J. 1983. Intentionality, an essay in the philosophy of mind. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  91. Selen, L.P.J., M.N. Shadlen, and D.M. Wolpert. 2012. Deliberation in the motor system: Reflex gains track evolving evidence leading to a decision. Journal of Neuroscience 32(7): 2276–2286. doi:10.1523/JNEUROSCI. 5273-11.2012.

    Article  Google Scholar 

  92. Shenoy, K. V., Sahani, M., and M.M. Churchland. 2013. Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuroscience 36(1). doi:10.1146/annurev-neuro-062111-150509

  93. Sirigu, A., E. Daprati, S. Ciancia, P. Giraux, N. Nighoghossian, A. Posada, and P. Haggard. 2004. Altered awareness of voluntary action after damage to the parietal cortex. Nature Neuroscience 7(1): 80–84. doi:10.1038/nn1160.

    Article  Google Scholar 

  94. Soon, C.S., M. Brass, H.-J. Heinze, and J.-D. Haynes. 2008. Unconscious determinants of free decisions in the human brain. Nature Neuroscience 11(5): 543–545. doi:10.1038/nn.2112.

    Article  Google Scholar 

  95. Soon, C. S., Hanxi He, A., Bode, S., and J.-D. Haynes. 2013. Predicting free choices for abstract intentions. Proceedings of the National Academy of Sciences 1–6. doi:10.1073/pnas.1212218110

  96. Thelen, E., and L. Smith. 1994. A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.

    Google Scholar 

  97. Thompson, E., and F. Varela. 2001. Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences 5(10): 418–425.

    Article  Google Scholar 

  98. Trevena, J.A., and J. Miller. 2002. Cortical movement preparation before and after a conscious decision to move. Consciousness and Cognition 11(2): 162–190. doi:10.1006/ccog.2002.0548.

    Article  Google Scholar 

  99. Trevena, J.A., and J. Miller. 2010. Brain preparation before a voluntary action: Evidence against unconscious movement initiation. Consciousness and Cognition 19(1): 447–456. doi:10.1016/j.concog.2009.08.006.

    Article  Google Scholar 

  100. Uithol, S., and M. Maranesi. 2014. No need to match: A comment on Bach, Nicholson and Hudson’s ‘affordance-matching hypothesis’. Frontiers in Human Neuroscience 8(710): 1–2. doi:10.3389/fnhum.2014.00710.

    Google Scholar 

  101. Uithol, S., and M. Paulus. 2013. What do infants understand of others’ action? A theoretical account of early social cognition. Psychological Research 78(5): 609–622. doi:10.1007/s00426-013-0519-3.

    Article  Google Scholar 

  102. Uithol, S., I. van Rooij, H. Bekkering, and W.F.G. Haselager. 2012. Hierarchies in action and motor control. Journal of Cognitive Neuroscience 24(5): 1077–1086. doi:10.1162/jocn_a_00204.

    Article  Google Scholar 

  103. Uithol, S., D. Burnston, and W.F.G. Haselager. 2014. Why we may not find intentions in the brain. Neuropsychologia 56: 129–139. doi:10.1016/j.neuropsychologia.2014.01.010.

    Article  Google Scholar 

  104. van Gelder, T. 1998. The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences 21: 615–665.

    Google Scholar 

  105. Varela, F.J., E. Thompson, and E. Rosch. 1991. The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.

    Google Scholar 

  106. Vinding, M.C., M. Jensen, and M. Overgaard. 2014. Distinct electrophysiological potentials for intention in action and prior intention for action. Cortex 50: 86–99. doi:10.1016/j.cortex.2013.09.001.

    Article  Google Scholar 

  107. Vogelstein, J.T., Y. Park, T. Ohyama, R.A. Kerr, J.W. Truman, C.E. Priebe, and M. Zlatic. 2014. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344(6182): 386–392. doi:10.1126/science.1250298.

    Article  Google Scholar 

  108. Wegner, D.M. 2003. The illusion of conscious will. Cambridge: The MIT Press.

    Google Scholar 

  109. Wong, K.-F., and X.-J. Wang. 2006. A recurrent network mechanism of time integration in perceptual decisions. Journal of Neuroscience 26(4): 1314–1328. doi:10.1523/JNEUROSCI. 3733-05.2006.

    Article  Google Scholar 

Download references

Acknowledgments

Aaron Schurger was supported by a grant from the Association Robert Debre Pour la Recherche Medicale. Sebo Uithol was supported by the EU grant ‘Towards an Embodied Science of Intersubjectivity’ (TESIS, FP7-PEOPLE-2010-ITN, 264828).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aaron Schurger or Sebo Uithol.

Additional information

Aaron Schurger and Sebo Uithol contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schurger, A., Uithol, S. Nowhere and Everywhere: The Causal Origin of Voluntary Action. Rev.Phil.Psych. 6, 761–778 (2015). https://doi.org/10.1007/s13164-014-0223-2

Download citation

Keywords

  • Voluntary Action
  • Intentional Action
  • Supplementary Motor Area
  • Muscle Spindle
  • Movement Onset