Alves, T.R., Carando, D.: Holomorphic functions with large cluster sets. Math. Nachr. 294, 1250–1261 (2021)
MathSciNet
Article
Google Scholar
Aron, R.M., García, D., Maestre, M.: Linearity in non-linear problems. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95, 7–12 (2001)
Aron, R., Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Lineability: The search for linearity in Mathematics. Monographs and Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton (2016)
MATH
Google Scholar
Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145, 4449–4464 (2017)
MathSciNet
Article
Google Scholar
Bartoszewicz, A., Glab, S.: Strong algebrability of sets of sequences of functions. Proc. Am. Math. Soc. 141, 827–835 (2013)
MathSciNet
Article
Google Scholar
Bayart, F.: Linearity of sets of strange functions. Mich. Math. J. 53, 291–303 (2005)
MathSciNet
Article
Google Scholar
Bayart, F.: Topological and algebraic genericity of divergence and of universality. Studia Math. 167, 161–181 (2005)
MathSciNet
Article
Google Scholar
Bayart, F., Quarta, L.: Algebras in sets of queer functions. Isr. J. Math. 158, 285–296 (2007)
MathSciNet
Article
Google Scholar
Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51, 71–130 (2014)
MathSciNet
Article
Google Scholar
Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)
MathSciNet
Article
Google Scholar
Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichlet–Schen Reihen $\sum \frac{a_n}{n^s}$. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913)
Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)
MathSciNet
Article
Google Scholar
Conejero, J.A., Seoane-Sepúlveda, J.B., Sevilla-Peris, P.: Isomorphic copies of $\ell _1$ for $m$-homogeneous non-analytic Bohnenblust-Hille polynomials. Math. Nachr. 290(2–3), 218–225 (2017)
MathSciNet
Article
Google Scholar
Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions (New Mathematical Monographs). Cambridge University Press, Cambridge (2019)
Book
Google Scholar
Gurarij, V.I.: Linear spaces composed of non-differentiable functions. C. R. Acad. Bulg. Sci. 44(5), 13–16 (1991)
MATH
Google Scholar
Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)
Book
Google Scholar