Abstract
A closed Riemann surface S is called a generalized Fermat curve of type (p, n), where \(n,p \ge 2\) are integers such that \((p-1)(n-1)>2\), if it admits a group \(H \cong {\mathbb Z}_{p}^{n}\) of conformal automorphisms with quotient orbifold S/H of genus zero with exactly \(n+1\) cone points, each one of order p; in this case H is called a generalized Fermat group of type (p, n). In this case, it is known that S is non-hyperelliptic and that H is its unique generalized Fermat group of type (p, n). Also, explicit equations for them, as a fiber product of classical Fermat curves of degree p, are known. For p a prime integer, we describe those subgroups K of H acting freely on S, together with algebraic equations for S/K, and determine those K such that S/K is hyperelliptic.
Similar content being viewed by others
References
Accola, R.: Topics in the Theory of Riemann Surfaces. Springer, New York (1994)
Atarihuana, Y., Hidalgo, R.A.: On the connectivity of the branch and real locus of \({\cal{M}}_{0,[n+1]}\). Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser A. Mat. 113(4), 2981–2998 (2019)
Baker, H.F.: An Introduction to the Theory of Multiply Periodic Functions. Cambridge University Press, Cambridge (1907)
Bers, L.: Finite dimensional Teichmüller spaces and generalizations. Bull. (New Ser.) Am. Math. Soc. 5(2), 131–172 (1981)
Bers, L.: Correction to Spaces of Riemann surfaces as bounded domains. Bull. Am. Math. Soc. 67, 465–466 (1961)
Carocca, A., González, V., Hidalgo, R.A., Rodríguez, R.: Generalized Humbert curves. Israel J. Math. 64(1), 165–192 (2008)
Earle, C.J., Kra, I.: On isometries between Teichmüller spaces. Duke Math. J. 41, 583–591 (1974)
Edge, W.L.: Humbert’s plane sextics of genus \(5\). Math. Proc. Camb. Philos. Soc. 47(3), 483–495 (1951)
Edge, W.L.: The common curve of quadrics sharing a self-polar simplex. Ann. Mat. Pura Appl. 114, 241–270 (1977)
Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Funktionen (two volumes), B. G. Teubner, 1889 and 1926
González-Diez, G., Hidalgo, R.A., Leyton, M.: Generalized Fermat curves. J. Algebra 321, 1643–1660 (2009)
Greenberg, L.: Maximal groups and signatures. In: Discontinuous Groups and Riemann Surfaces (Proceedings of Conference University Maryland, College Park, MD,: Annals of Mathematics Studies, No. 79, vol. 1974, pp. 207–226. Princeton University Press (1973)
Hidalgo, R.A.: Homology closed Riemann surfaces. Q. J. Math. 63, 931–952 (2012)
Hidalgo, R.A.: Holomorphic differentials of generalized Fermat curves. J. Number Theory 217, 78–101 (2020)
Hidalgo, R.A., Kontogeorgis, A., Leyton-Álvarez, M., Paramantzouglou, P.: Automorphisms of generalized Fermat curves. J. Pure Appl. Algebra 221, 2312–2337 (2017)
Humbert, G.: Sur un complexe remarquable de coniques. J. d’École Polytech. 64, 123–149 (1894)
Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)
Maclachlan, C.: Abelian groups of automorphisms of compact Riemann surfaces. Proc. Lond. Math. Soc. 15(3), 699–712 (1965)
Mumford, D., Fogarty, J.: Geometric Invariant Theory, 2nd edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34. Springer, Berlin (1982)
Nag, S.: The Complex Analytic Theory of Teichmüller Spaces. A Wiley-Interscience Publication. Wiley, New York (1988)
Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89–92 (1916)
Petri, K.: Uber die Invariante Darstellung Algebraischer Funktionen einer Veranderlichen. Math. Ann. 88, 242–289 (1922)
Royden, H. L.: Automorphisms and isometries of Teichmüller space. In: Lars, V., Ahlfors et al., editor, Advances in the Theory of Riemann Surfaces, Annals of Mathematics Studies, vol. 66, pp. 369–383 (1971)
Saint-Donat, B.: On Petri’s analysis of the linear system of quadrics through a canonical curve. Math. Ann. 206, 157–175 (1973)
Schwartz, H.A.: Über diejenigen algebraischen Gleichungen zwischen zwei veränderlichen Größen, welche eine schaar rationaler, eindeutig umkehrbarer Transformationen in sich selbst zulassen. J. Reine Angew. Math. 87, 139–145 (1890)
Varley, R.: Weddle’s surfaces, Humbert’s curves and a certain 4-dimensional abelian variety. Am. J. Math. 108, 931–952 (1986)
Acknowledgements
The author would like to thank both referees for their valuable comments, suggestions and corrections which helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partially supported by projects Fondecyt 1190001 and 1220261.
Rights and permissions
About this article
Cite this article
Hidalgo, R.A. Smooth quotients of generalized Fermat curves. Rev Mat Complut 36, 27–55 (2023). https://doi.org/10.1007/s13163-022-00422-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-022-00422-5