Skip to main content
Log in

2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper we introduce and investigate new 2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces. We establish characterizations of these function spaces via the \(\varphi \)–transform, the atomic and molecular decomposition and the wavelet decomposition. As applications we consider boundedness of the Calder\(\acute{\mathrm{o}}\)n–Zygmund operator and the pseudo–differential operator on the function spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batbold, Ts., Sawano, Y.: Decomposition for local Morrey spaces. Eurasian Math. J. 5, 9–45 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bony, J.M.: Second microlocalization and propagation of singularities for semilinear hyperbolic equations, pp. 11–49. Academic Press, Hyperbolic equations and related topics (1988)

    Google Scholar 

  3. Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–571 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc. 358, 1469–1510 (2005)

    Article  MathSciNet  Google Scholar 

  5. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  6. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Func. Anal. 93, 34–171 (1990)

    Article  MathSciNet  Google Scholar 

  7. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces, CBMS Regional Conf. Series in Math. 79, Amer. Math. Soc., (1991)

  8. Frazier, M., Torres, R., Weiss, G.: The boundedness of Calder\(\acute{\rm o}\)n-Zygmund operators on the spaces \({\dot{F}}^{\alpha, q}_{p}\), Revista Mat. Iberoamericana 4, 41–70 (1988)

    Google Scholar 

  9. Jaffard, S.: Pointwise regularity criteria. C. R. Acad. Sci. Paris 1339, 757–762 (2004)

    Article  MathSciNet  Google Scholar 

  10. Jaffard, S.: Wavelet techniques for pointwise regularity. Annal. Fac. Sci. Toulouse 15, 3–33 (2006)

    Article  MathSciNet  Google Scholar 

  11. Jaffard, S.: Pointwise regularity associated with function spaces and multifractal analysis, Approximation and Probability, Banach Center Publications, vol. 72, pp. 93–110. Polish Academy of Sciences, Institute of Mathematics (2006)

    MATH  Google Scholar 

  12. Jaffard, S., Mélot, C.: Wavelet analysis of fractal boundaries Part 1 local exponents. Commun. Math. Phys. 258, 513–539 (2004)

    Article  Google Scholar 

  13. Kempka, H.: 2-microlocal Besov spaces and function spaces of varying smoothness. Rev. Mat. Complut. 22, 227–251 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kempka, H.: Atomic, molecular, wavelet decomposition of generalized 2-microlocal Besov spaces. Funct. Approx. Comment. Math. 171–208,(2010)

  15. Komori-Furuya, Y., Matsuoka, K., Nakai, E., Sawano, Y.: Applications of Littlewood-Paley theory for \({\dot{B}}_{{ }^-}\) Morrey spaces to the boundedness of integral operators, J. Funct. spaces Appli. (2013), 1-21

  16. Kyriazis, G.: Decomposition systems for function spaces. Studia Math. 157, 133–169 (2003)

    Article  MathSciNet  Google Scholar 

  17. Levy-Vehel, J., Seuret, S.: 2-microlocal formalism, Fractal Geomery and Applications. A Jubilee of Benoit Mandelbrot, Proceedings of Symposia in Pure Mathematics, vol. 72, part 2, 153-215 (2004)

  18. Meyer, Y.: Wavelet analysis, local Fourier analysis and 2-microlocalization. Contemporary Math. 189, 393–401 (1995)

    Article  MathSciNet  Google Scholar 

  19. Meyer, Y.: Wavelets, Vibrations and Scalings. CRM Monograph Series. AMS 9, 393–401 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Sawano, Y., Tanaka, H.: Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z. 257, 871–905 (2007)

    Article  MathSciNet  Google Scholar 

  21. Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel-Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)

    Article  MathSciNet  Google Scholar 

  22. Sickel, W., Yang, D., Yuan, W.: Morrey and Campanato meet Besov, Lizorkin and Triebel, Lect. Notes in Math. vol. 2005, Springer, Berlin, (2010)

  23. Triebel, H.: Theory of function spaces. Birkhäeuser, Basel (1983)

    Book  Google Scholar 

  24. Triebel, H.: Theory of function spaces II. Birkhäeuser, Basel (1992)

    Book  Google Scholar 

  25. Yang, D., Yuan, W.: New Besov-type spaces and Triebel-Lizorkin-type spaces. Math. Z. 265, 451–480 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Yoshihiro Sawano for his encouragement and many helpful remarks. The author thanks the referee for his/her valuable comments and his/her constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Saka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We will prove the Lemma used in the proof of Theorem 1. For the notations see the proof of Theorem 1.

Lemma A

We have, for a dyadic cube P with \(l(P)=2^{-j}\),

  1. (i)
    $$\begin{aligned} \sup (f)^*(P) \approx \inf _{\gamma }(f)^*(P) \end{aligned}$$

    if \(\gamma \) is sufficently large,

  2. (ii)
    $$\begin{aligned} \inf _{\gamma }(f)(P)\chi _{P}\le 2^{\gamma L}\sum \limits _{R\subset P, l(R) =2^{-(\gamma +j)}}t_{\gamma }^*(R)\chi _{R} \end{aligned}$$
  3. (iii)
    $$\begin{aligned} c({\dot{e}}^{s'}_{pq})(P) \approx c^*({\dot{e}}^{s'}_{pq})(P), \ \ c(\tilde{{\dot{e}}}^{s'}_{pq})^{\sigma }_{x_{0}}(P) \approx c^*(\tilde{{\dot{e}}}^{s'}_{pq})^{\sigma }_{x_{0}}(P). \end{aligned}$$

Proof

(i) is just [6], Lemma A.4].

(ii) Let \(R_{0}\) and R in P be cubes with \(l(R_{0})=l(R)=2^{-(\gamma +j)}\). It is sufficient to show

$$\begin{aligned} t_{\gamma }(R_{0}) \le C2^{\gamma L}t_{\gamma }^*(R). \end{aligned}$$

Since

$$\begin{aligned} 1 \le C2^{\gamma L}(1+ 2^{\gamma +j}|x_{R}-x_{R_{0}}|)^{-L}, \end{aligned}$$

we have

$$\begin{aligned} t_{\gamma }(R_{0})\le & {} Ct_{\gamma }(R_{0})2^{\gamma L} (1+2^{\gamma +j}|x_{R}-x_{R_{0}}|)^{-L} \\\le & {} C2^{\gamma L}\sum \limits _{l(R')=2^{-(\gamma +j)}}t_{\gamma }(R') (1+2^{\gamma +j}|x_{R}-x_{R'}|)^{-L}=C2^{\gamma L}t_{\gamma }^*(R) \end{aligned}$$

(iii) It is sufficient to prove

$$\begin{aligned} c^*({\dot{e}}^{s'}_{pq})(P) \le C c({\dot{e}}^{s'}_{pq})(P) \end{aligned}$$

since \(|c(P)| \le c^*(P)\).

Using the maximal operator \(M_{t}\ (0< t \le 1)\) as in the proof of Lemma 1 and the Fefferman-Stein vector valued inequality, we have

$$\begin{aligned} c^*({\dot{f}}^{s'}_{pq})(P)= & {} \left| \left| \left\{ \sum \limits _{i \ge j} \left( 2^{is'}\sum \limits _{l(R)=2^{-i}}|c^*(R)|\chi _{R}\right) ^{q} \right\} ^{1/q}\right| \right| _{L^p(P)}\\\le & {} C\left| \left| \left\{ \sum \limits _{i \ge j} (2^{is'}\right. \right. \right. \\&\left. \left. \left. \times \sum \limits _{l(R)=2^{-i}}\sum \limits _{l(R')=2^{-i}}|c(R')| (1+2^{i}|x_{R}-x_{R'}|)^{-L}\chi _{R})^{q} \right\} ^{1/q}\right| \right| _{L^p(P)}\\\le & {} C\left| \left| \left\{ \sum \limits _{i \ge j} \left( 2^{is'}\sum \limits _{l(R)=2^{-i}}M_{t}\left( \sum \limits _{l(R')=2^{-i}}|c(R')| \chi _{R'}\right) \chi _{R}\right) ^{q}\right\} ^{1/q}\right| \right| _{L^p(P)} \\\le & {} C\left| \left| \left\{ \sum \limits _{i \ge j} \left( \sum \limits _{l(R')=2^{-i}}2^{is'}|c(R')|\chi _{R'}\right) ^{q} \right\} ^{1/q}\right| \right| _{L^p(P)} =Cc({\dot{f}}^{s'}_{pq})(P) \end{aligned}$$

if \(0< t < \min (p,q)\), \(L > n/t\) and \(0< p< \infty , 0< q \le \infty \). For the B-type case, we obtain the same result by the same argument as the above. Moreover, for \(p=\infty \) case, we have the same result. We also have same result for \(c(\tilde{{\dot{e}}}^{s'}_{pq})^{\sigma }_{x_{0}}(P)\) by same way as the above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saka, K. 2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces. Rev Mat Complut 35, 923–962 (2022). https://doi.org/10.1007/s13163-021-00412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-021-00412-z

Keywords

Mathematics Subject Classification

Navigation