Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Geometric configurations of singularities of planar polynomial differential systems [A global classification in the quadratic case], Accepted for publication by Springer Nature Switzerland AG (January, 2019)
Arnold, V.: Métodes mathématiques de la mécanique classique. Éditions MIR, Moscou (1976)
Google Scholar
Baltag, V.: Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems. Bull. Acad. Sci. Moldova. Math. 2, 31–46 (2003)
MATH
Google Scholar
Bularas, D., Calin, I., Timochouk, L., Vulpe, N.: T-comitants of quadratic systems: a study via the translation invariants, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Report no. 96-90, (1996). ftp://ftp.its.tudelft.nl/publications/techreports/1996/DUT-TWI-96- 90.ps.gz
Cairó, L., Giacomini, H., Llibre, J.: Liouvillian first integrals for the planar Lotka–Volterra systems. Rend. Circ. Mat. Palermo 2(52), 389–418 (2003)
MathSciNet
Article
Google Scholar
Cairó, L., Llibre, J.: Darbouxian first integrals and invariants for real quadratic systems having an invariant conic. J. Phys. A: Math. Gen. 35, 589–608 (2002)
MathSciNet
Article
Google Scholar
Cairó, L., Feix, M.R., Llibre, J.: Integrability and algebraic solutions for planar polynomial differential systems with emphasis on the quadratic systems. Resenhas 4, 127–161 (1999)
MathSciNet
MATH
Google Scholar
Calin, I.: On rational bases of \(GL(2,\mathbb{R})\)-comitants of planar polynomial systems of differential equations. Bull. Acad. Sci. Moldova. Math. 2, 69–86 (2003)
MathSciNet
MATH
Google Scholar
Cao, F., Jiang, J.: The classification on the global phase portraits of two-dimensional Lotka–Volterra system. J. Dyn. Differ. Equ. 20(4), 797–830 (2008)
MathSciNet
Article
Google Scholar
Chavarriga, J., Giacomini, H., Llibre, J.: Uniqueness of algebraic limit cycles for quadratic systems. J. Math. Anal. Appl. 261, 85–99 (2001)
MathSciNet
Article
Google Scholar
Christopher, C.: Quadratic systems having a parabola as an integral curve. Proc. R. Soc. Edinb. 112A, 113–134 (1989)
MathSciNet
Article
Google Scholar
Christopher, C.: Invariant algebraic curves and conditions for a center. Proc. R. Soc. Edinb. 124A, 1209–1229 (1994)
Article
Google Scholar
Darboux, G.: Mémoire sur les équations différentielles du premier ordre et du premier degré. Bulletin de Sciences Mathématiques, 2me série, 2(1), 60–96; 123–144; 151–200 (1878)
Druzhkova, T.A.: The algebraic integrals of a certain differential equation. Differ. Equ. 4, 736–739 (1968)
MathSciNet
MATH
Google Scholar
Grace, J.H., Young, A.: The Algebra of Invariants. Stechert, New York (1941)
MATH
Google Scholar
Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902). (Reprinted in Bull. Am. Math. 37 (2000), 407–436)
Jouanolou, J.P.: Equations de Pfaff algébriques. Lecture Notes in Math, vol. 708. Springer, New York (1979)
Book
Google Scholar
Kooij, R.E., Christopher, C.J.: Algebraic invariant curves and the integrability of polynomial systems. Appl. Math. Lett. 6(4), 5153 (1993)
MathSciNet
Article
Google Scholar
Lawrence, J.D.: A Catalog of Special Planar Curves. Dover Publication (1972)
Llibre, J., Swirszcz, G.: Classification of quadratic systems admitting the existence of an algebraic limit cycle. Bull. Sci. Math. 131, 405–421 (2007)
MathSciNet
Article
Google Scholar
Llibre, J., Ramirez, R., Ramirez, V., Sadovskaia, N.: The 16th Hilbert problem restricted to circular algebraic limit cycles. J. Differ. Equ. 248, 1401–1409 (2010)
Article
Google Scholar
Ollagnier, J.M.: Liouvillian integration of the Lotka–Volterra system. Qual. Theory Dyn. Syst. 2, 307–358 (2001)
MathSciNet
Article
Google Scholar
Oliveira, R.D.S., Rezende, A.C., Vulpe, N.: Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space \(\mathbb{R}^{12}\): Electron. J. Differ. Equ. 162 1–50 (2016)
Oliveira, R.D.S., Rezende, A.C., Schlomiuk, D., Vulpe, N.: Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electron. J. Differ. Equ. 295 1–122 (2017)
Olver, P.J.: Classical Invariant Theory, London Mathematical Society, Student Texts, vol. 44. Cambridge University Press (1999)
Poincaré, H.: Sur les courbes définies par les équations differentielles, Hournal de Mathématiques Pures et Apliquées, 4eme série, 1 (1885), 167–244. (Oeuvre (1880–1890), Gauthier–Villar, Paris)
Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. I. Rend. Circ. Mat. Palermo 5, 169–191 (1891)
MATH
Google Scholar
Poincaré, H.: Sur l’intégration algébrique des équations différentielles. C. R. Acad. Sci. Paris 112, 761–764 (1891)
MATH
Google Scholar
Popa, M.N.: Applications of Algebraic Methods to Differential Systems. Piteşti Univers, The Flower Power Edit, Romania (2004)
Qin, Y.: On the algebraic limit cycles of second degree of the differential equation \(dy/dx =\Sigma _{0\le i+j \le 2} a_{ij} x^i y^j / \Sigma _{0\le i+j \le 2} b_{ij} x^i y^j \). Chin. Math. Acta 8, 608 (1996)
Google Scholar
Reyn, J.W.: Phase portraits of a quadratic system of differential equations occurring frequently in applications. Nieuw Arch. Wisk. (4) 5(2), 107–151 (1987)
MathSciNet
MATH
Google Scholar
Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Am. Math. Soc. 338, 799–841 (1993)
MathSciNet
Article
Google Scholar
Schlomiuk, D.: Algebraic and geometric aspects of the theory of polynomial vector fields. In: Bifurcations and Periodic Orbits of Vector Fields, Dana Schlomiuk Editor, NATO Advanced Science Institute Series C Mathematics Physics Science, vol. 408, pp. 429–467. Kluwer Academic Publishers, Dordrecht (1993)
Schlomiuk, D.: Elementary first integrals and algebraic invariant curves of differential equations. Expo. Math. 11, 433–454 (1993)
MathSciNet
MATH
Google Scholar
Schlomiuk, D.: Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields. Publ. Mat. 58, 461–496 (2014)
MathSciNet
Article
Google Scholar
Schlomiuk, D., Guckenheimer, J., Rand, R.: Integrability of plane quadratic vector fields. Expo. Math. 8(1), 3–25 (1990)
MathSciNet
MATH
Google Scholar
Schlomiuk, D., Vulpe, N.: Geometry of quadratic differential systems in the neighbourhood of the line at infinity. J. Differ. Equ. 215, 357–400 (2005)
Article
Google Scholar
Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of total multiplicity four. Nonlinear Anal. 68(4), 681–715 (2008)
MathSciNet
Article
Google Scholar
Schlomiuk, D., Vulpe, N.: Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines. J. Fixed Point Theory Appl. 8(1), 177–245 (2010)
MathSciNet
Article
Google Scholar
Schlomiuk, D., Vulpe, N.: Global topological classification of Lotka–Volterra quadratic differential systems. Electron. J. Differ. Equ. 2012(64), 69 (2012)
MathSciNet
MATH
Google Scholar
Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity. Rocky Mt. J. Math. 38(6), 1–60 (2008)
MathSciNet
Article
Google Scholar
Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four. Bul. Acad. Ştiinţe Repub. Mold. Mat. 1, 27–83 (2008)
MathSciNet
MATH
Google Scholar
Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of at least five total multiplicity. Qual. Theory Dyn. Syst. 5, 135–194 (2004)
MathSciNet
Article
Google Scholar
Schlomiuk, D., Vulpe, N.: The full study of planar quadratic differential systems possessing a line of singularities at infinity. J. Dyn. Differ. Equ. 20, 737–775 (2008)
MathSciNet
Article
Google Scholar
Sibirskii, K.S.: Introduction to the algebraic theory of invariants of differential equations, Translated from the Russian. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester, 1988. (This is a translation of the Russian original [“Shtiintsa”, Kishinev, 1982; MR0716501].)
Vulpe, N.: Characterization of the finite weak singularities of quadratic systems via invariant theory. Nonlinear Anal. 74(4), 6553–6582 (2011)
MathSciNet
Article
Google Scholar
Vulpe, N.I.: Polynomial bases of comitants of differential systems and their applications in qualitative theory. (Russian) “Shtiintsa”, Kishinev, (1986)
Zhang, X.: The 16th Hilbert problem on algebraic limit cycles. J. Differ. Equ. 251, 1778–1789 (2011)
MathSciNet
Article
Google Scholar