Skip to main content

Stability of mean curvature flow solitons in warped product spaces


In this paper we establish a natural framework for the stability of mean curvature flow solitons in warped product spaces. These solitons are regarded as stationary immersions for a weighted volume functional. Under this point of view, we are able to find geometric conditions for finiteness of the index and some characterizations of stable solitons. We also prove some non-existence results for solitons as applications of a comparison principle which suits well the structure of the diffusion elliptic operator associated to the weighted measures we are considering.

This is a preview of subscription content, access via your institution.


  1. Alías, L.J., de Lira, J.H.S., Rigoli, M.: Mean curvature flow solitons in the presence of conformal vector fields. J. Geom. Anal. 30(2), 1466–1529 (2020)

    MathSciNet  Article  Google Scholar 

  2. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum principles and geometric applications. Springer Monographs in Mathematics. Springer, Cham, (2016). xvii+570 pp. ISBN: 978-3-319-24335-1; 978-3-319-24337-5

  3. Bessa, G.P., Pessoa, L.F., Rigoli, M.: Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers. Israel J. Math. 226(2), 703–736 (2018)

    MathSciNet  Article  Google Scholar 

  4. Bianchini, B., Mari, L., Rigoli, M.: Spectral radius, index estimates for Schrödinger operators and geometric applications. J. Funct. Anal. 256(6), 1769–1820 (2009)

    MathSciNet  Article  Google Scholar 

  5. Bianchini, B., Mari, L., Rigoli, M.: On some aspects of oscillation theory and geometry. Mem. Am. Math. Soc. vol. 225 (2013), no. 1056, vi+195 pp. ISBN: 978-0-8218-8799-8

  6. Brooks, R.: A relation between growth and the spectrum of the Laplacian. Math. Z. 178(4), 501–508 (1981)

    MathSciNet  Article  Google Scholar 

  7. do Carmo, M.P., Zhou, D.: Eigenvalue estimate on complete noncompact Riemannian manifolds and applications. Trans. Am. Math. Soc. 351(4), 1391–1401 (1999)

    MathSciNet  Article  Google Scholar 

  8. Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete \(f\)-minimal surfaces. Trans. Am. Math. Soc. 367(6), 4041–4059 (2015)

    MathSciNet  Article  Google Scholar 

  9. Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)

    MathSciNet  Article  Google Scholar 

  10. Colombo, G., Mari, L., Rigoli, M.: Remarks on mean curvature flow solitons in warped products. Discrete Contin. Dyn. Syst. S 13, 1957–1991 (2020)

    MathSciNet  Article  Google Scholar 

  11. Devyver, B.: On the finiteness of the Morse index for Schrödinger operators. Manuscripta Math. 139(1–2), 249–271 (2012)

    MathSciNet  Article  Google Scholar 

  12. Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math. 17(3), 443–456 (2013)

    MathSciNet  Article  Google Scholar 

  13. Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math. 82(1), 121–132 (1985)

    MathSciNet  Article  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224. Springer-Verlag, Berlin, (1983). xiii+513 pp. ISBN: 3-540-13025-X

  15. Impera, D., Rimoldi, M.: Stability properties and topology at infinity of \(f\)-minimal hypersurfaces. Geom. Dedicata 178, 21–47 (2015)

    MathSciNet  Article  Google Scholar 

  16. Kazdan, J.L.: Unique continuation in geometry. Commun. Pure Appl. Math. 41(5), 667–681 (1988)

    MathSciNet  Article  Google Scholar 

  17. Mari, L., Mastrolia, P., Rigoli, M.: A note on Killing fields and CMC hypersurfaces. J. Math. Anal. Appl. 431(2), 919–934 (2015)

    MathSciNet  Article  Google Scholar 

  18. Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    MathSciNet  Article  Google Scholar 

  19. Piepenbrink, J.: Finiteness of the lower spectrum of Schrödinger operators. Math. Z. 140, 29–40 (1974)

    MathSciNet  Article  Google Scholar 

  20. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique. Progress in Mathematics, 266. Birkhäuser Verlag, Basel. xiv+282 pp. ISBN: 978-3-7643-8641-2 (2008)

  21. Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131(4), 1283–1288 (2003)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the anonymous referees for reading the manuscript in great detail and for giving several valuable suggestions and useful comments which improved the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Luis J. Alías.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia.

Luis J. Alías and Marco Rigoli were partially supported by MICINN/FEDER project PGC2018-097046-B-I00 and Fundación Séneca project 19901/GERM/15, Spain.

Jorge H.S. de Lira was partially supported by PROEX/CAPES and PQ-CNPq \(\#\) 307410/2018-8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alías, L.J., de Lira, J.H.S. & Rigoli, M. Stability of mean curvature flow solitons in warped product spaces. Rev Mat Complut 35, 287–309 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Mean curvature flow soliton
  • Stability
  • Spectral theory of elliptic operators

Mathematics Subject Classification

  • 53C42
  • 53C21
  • 49Q20