Abstract
We study integrability conditions for existence and nonexistence of a local-in-time integral solution of fractional semilinear heat equations with rather general growing nonlinearities in uniformly local \(L^p\) spaces. Our main results about this matter consist of Theorems 1.4, 1.6, 5.1 and 5.3. We introduce a supersolution of an integral equation which can be applied to a nonlocal parabolic equation. When the nonlinear term is \(u^p\) or \(e^u\), a local-in-time solution can be constructed in the critical case, and integrability conditions for the existence and nonexistence are completely classified. Our analysis is based on the comparison principle, Jensen’s inequality and \(L^p\)-\(L^q\) type estimates.
This is a preview of subscription content, access via your institution.

References
Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 363–441 (1991)
Bonforte, M., Sire, Y., Vázquez, J.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)
Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277–304 (1996)
Dupaigne, L., Farina, A.: Stable solutions of \(-\Delta u=f(u)\) in \({{\mathbb{R}}^N}\). J. Eur. Math. Soc. 12, 855–882 (2010)
Fujishima, Y.: Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete Contin. Dyn. Syst. 34, 4617–4645 (2014)
Fujishima, Y., Ioku, N.: Existence and nonexistence of solutions for the heat equation with a superlinear source term. J. Math. Pures Appl. 118, 128–158 (2018)
Furioli, G., Kawakami, T., Ruf, B., Terraneo, E.: Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)
Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 62, 415–421 (1986)
Hayashi, H., Ogawa, T.: \(L^p\)-\(L^q\) type estimate for the fractional order Laplacian in the Hardy space and global existence of the dissipative quasi-geostrophic equation. Adv. Differ. Equ. Control Process. 5, 1–36 (2010)
Hisa, K., Ishige, K.: Existence of solutions for a fractional semilinear parabolic equation with singular initial data. Nonlinear Anal. 175, 108–132 (2018)
Ibrahim, S., Jrad, R., Majdoub, M., Saanouni, T.: Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21, 535–551 (2014)
Ioku, N., Ruf, B., Terraneo, E.: Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({{\mathbb{R}}^2}\). Math. Phys. Anal. Geom. 18, 19 (2015)
Laister, R., Robinson, J., Sierżȩga, M., Vidal-López, A.: A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1519–1538 (2016)
Li, K.: A characteristic of local existence for nonlinear fractional heat equations in Lebesgue spaces. Comput. Math. Appl. 73, 653–665 (2017)
Li, K.: No local \(L^1\) solutions for semilinear fractional heat equations. Fract. Calc. Appl. Anal. 20, 1328–1337 (2017)
Maekawa, Y., Terasawa, Y.: The Navier-Stokes equations with initial data in uniformly local \(L^p\) spaces. Differ. Integral Equ. 19, 369–400 (2006)
Miyamoto, Y.: A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth. J. Differ. Equ. 264, 2684–2707 (2018)
Ni, W., Sacks, P.: Singular behavior in nonlinear parabolic equations. Trans. Amer. Math. Soc. 287, 657–671 (1985)
Quittner, P.,Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007. xii+584 pp. ISBN: 978-3-7643-8441-8
Robinson, J., Sierżȩga, M.: Supersolutions for a class of semilinear heat equations. Rev. Mat. Complut. 26, 341–360 (2013)
Ruf, B., Terraneo, E.: The Cauchy problem for a semilinear heat equation with singular initial data, Evolution equations, semigroups and functional analysis (Milano, 2000), 295–309, Progr. Nonlinear Differential Equations Appl., 50, Birkhuäser, Basel, (2002)
Sugitani, S.: On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math. 12, 45–51 (1975)
Terraneo, E.: Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differ. Equ. 27, 185–218 (2002)
Weissler, F.: Local existence and nonexistence for semilinear parabolic equations in \(L^p\). Indiana Univ. Math. J. 29, 79–102 (1980)
Weissler, F.: \(L^p\)-energy and blow-up for a semilinear heat equation, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), 545–551, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, (1986)
Acknowledgements
The second author was supported by JSPS KAKENHI Grant Number 19H01797.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Giraudon, T., Miyamoto, Y. Fractional semilinear heat equations with singular and nondecaying initial data. Rev Mat Complut 35, 415–445 (2022). https://doi.org/10.1007/s13163-021-00389-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-021-00389-9
Keywords
- Local-in-time solution
- Optimal singularity
- Supersolutions
- Fractional Laplacian
Mathematics Subject Classification
- Primary 35K55
- 35R11
- Secondary 35A01
- 46E30