Skip to main content

Fractional semilinear heat equations with singular and nondecaying initial data


We study integrability conditions for existence and nonexistence of a local-in-time integral solution of fractional semilinear heat equations with rather general growing nonlinearities in uniformly local \(L^p\) spaces. Our main results about this matter consist of Theorems 1.4, 1.6, 5.1 and 5.3. We introduce a supersolution of an integral equation which can be applied to a nonlocal parabolic equation. When the nonlinear term is \(u^p\) or \(e^u\), a local-in-time solution can be constructed in the critical case, and integrability conditions for the existence and nonexistence are completely classified. Our analysis is based on the comparison principle, Jensen’s inequality and \(L^p\)-\(L^q\) type estimates.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 363–441 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Bonforte, M., Sire, Y., Vázquez, J.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277–304 (1996)

    Article  MathSciNet  Google Scholar 

  4. Dupaigne, L., Farina, A.: Stable solutions of \(-\Delta u=f(u)\) in \({{\mathbb{R}}^N}\). J. Eur. Math. Soc. 12, 855–882 (2010)

    Article  MathSciNet  Google Scholar 

  5. Fujishima, Y.: Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete Contin. Dyn. Syst. 34, 4617–4645 (2014)

    Article  MathSciNet  Google Scholar 

  6. Fujishima, Y., Ioku, N.: Existence and nonexistence of solutions for the heat equation with a superlinear source term. J. Math. Pures Appl. 118, 128–158 (2018)

    Article  MathSciNet  Google Scholar 

  7. Furioli, G., Kawakami, T., Ruf, B., Terraneo, E.: Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)

    Article  MathSciNet  Google Scholar 

  8. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 62, 415–421 (1986)

    Article  Google Scholar 

  9. Hayashi, H., Ogawa, T.: \(L^p\)-\(L^q\) type estimate for the fractional order Laplacian in the Hardy space and global existence of the dissipative quasi-geostrophic equation. Adv. Differ. Equ. Control Process. 5, 1–36 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Hisa, K., Ishige, K.: Existence of solutions for a fractional semilinear parabolic equation with singular initial data. Nonlinear Anal. 175, 108–132 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ibrahim, S., Jrad, R., Majdoub, M., Saanouni, T.: Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21, 535–551 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ioku, N., Ruf, B., Terraneo, E.: Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({{\mathbb{R}}^2}\). Math. Phys. Anal. Geom. 18, 19 (2015)

    Article  Google Scholar 

  13. Laister, R., Robinson, J., Sierżȩga, M., Vidal-López, A.: A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1519–1538 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, K.: A characteristic of local existence for nonlinear fractional heat equations in Lebesgue spaces. Comput. Math. Appl. 73, 653–665 (2017)

    Article  MathSciNet  Google Scholar 

  15. Li, K.: No local \(L^1\) solutions for semilinear fractional heat equations. Fract. Calc. Appl. Anal. 20, 1328–1337 (2017)

    Article  MathSciNet  Google Scholar 

  16. Maekawa, Y., Terasawa, Y.: The Navier-Stokes equations with initial data in uniformly local \(L^p\) spaces. Differ. Integral Equ. 19, 369–400 (2006)

    MATH  Google Scholar 

  17. Miyamoto, Y.: A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth. J. Differ. Equ. 264, 2684–2707 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ni, W., Sacks, P.: Singular behavior in nonlinear parabolic equations. Trans. Amer. Math. Soc. 287, 657–671 (1985)

    Article  MathSciNet  Google Scholar 

  19. Quittner, P.,Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007. xii+584 pp. ISBN: 978-3-7643-8441-8

  20. Robinson, J., Sierżȩga, M.: Supersolutions for a class of semilinear heat equations. Rev. Mat. Complut. 26, 341–360 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ruf, B., Terraneo, E.: The Cauchy problem for a semilinear heat equation with singular initial data, Evolution equations, semigroups and functional analysis (Milano, 2000), 295–309, Progr. Nonlinear Differential Equations Appl., 50, Birkhuäser, Basel, (2002)

  22. Sugitani, S.: On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math. 12, 45–51 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Terraneo, E.: Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differ. Equ. 27, 185–218 (2002)

    Article  MathSciNet  Google Scholar 

  24. Weissler, F.: Local existence and nonexistence for semilinear parabolic equations in \(L^p\). Indiana Univ. Math. J. 29, 79–102 (1980)

    Article  MathSciNet  Google Scholar 

  25. Weissler, F.: \(L^p\)-energy and blow-up for a semilinear heat equation, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), 545–551, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, (1986)

Download references


The second author was supported by JSPS KAKENHI Grant Number 19H01797.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yasuhito Miyamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraudon, T., Miyamoto, Y. Fractional semilinear heat equations with singular and nondecaying initial data. Rev Mat Complut 35, 415–445 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Local-in-time solution
  • Optimal singularity
  • Supersolutions
  • Fractional Laplacian

Mathematics Subject Classification

  • Primary 35K55
  • 35R11
  • Secondary 35A01
  • 46E30