Skip to main content
Log in

Removability of zero modular capacity sets

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We introduce a notion of modular with a corresponding modular function space in order to build a modular capacity theory. We give two different definitions of capacity, one of them of variational type, the other one through either the modular of the test functions, or the modular of their gradients. We study, in both cases, the removability of sets of zero capacity in fairly general abstract Sobolev spaces with zero boundary values. As a key tool, we establish a modular Poincaré inequality. With the notion of modular function space in hands, we find a way to introduce a Banach function space, which allows to compare the zero capacity sets with respect to both notions. Thanks to this comparison, we characterize the compact sets of zero variational type capacity as removable sets. The paper is enriched with several examples, extending and unifying many results already known in literature in the settings of Musielak–Orlicz–Sobolev spaces, Lorentz–Sobolev spaces, variable exponent Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996)

    Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Academic Press, Amsterdam (2003)

    Google Scholar 

  3. Alvino, A., Trombetti, G., Lions, P.-L.: On optimization problems with prescribed rearrangements. Nonlinear Anal. 13(2), 185–220 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear integral operators and applications, volume 9 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (2003)

    MATH  Google Scholar 

  5. Baruah, D., Harjulehto, P., Hästö, P.: Capacities in generalized Orlicz spaces. J. Funct. Spaces, Art. ID 8459874 (2018)

  6. Benilan, P., Brezis, H., Crandall, M.G.: A semilinear equation in \(L^{1}(R^{N})\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(4), 523–555 (1975)

    MathSciNet  Google Scholar 

  7. Bennett, C., Sharpley, R.: Interpolation of operators, Volume 129 of Pure and Applied Mathematics. Academic Press Inc, Boston (1988)

    MATH  Google Scholar 

  8. Biegert, M.: Lattice homomorphisms between Sobolev spaces. Positivity 14(2), 353–371 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  10. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5(7), 773–789 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Brudnyĭ, Y.A., Krugljak, N.Y.: Interpolation functors and interpolation spaces. Vol. I, Volume 47 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, (1991). Translated from the Russian by Natalie Wadhwa, With a preface by Jaak Peetre

  12. Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or \(L^{1}\) data. J. Math. Anal. Appl. 479(1), 185–213 (2019)

    MathSciNet  Google Scholar 

  13. Cianchi, A.: Some results in the theory of Orlicz spaces and applications to variational problems. In: Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), pp. 50–92. Acad. Sci. Czech Repub. Inst. Math., Prague, (1999)

  14. Cianchi, A., Stroffolini, B.: An extension of Hedberg’s convolution inequality and applications. J. Math. Anal. Appl. 227, 166–186 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G., Dinca, G.: A Poincaré inequality in a Sobolev space with a variable exponent. Chin. Ann. Math. Ser. B 32(3), 333–342 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Costea, Ş.: Scaling invariant Sobolev-Lorentz capacity on \({\mathbb{R}}^n\). Indiana Univ. Math. J. 56(6), 2641–2669 (2007)

    MathSciNet  Google Scholar 

  17. Costea, S., Maz’ya, V.: Conductor inequalities and criteria for Sobolev–Lorentz two-weight inequalities. In: Maz’ya V (ed) Sobolev spaces in mathematics. II, volume 9 of Int. Math. Ser. (N. Y.), pp. 103–121. Springer, New York, (2009)

  18. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. In: Mazya, V. (ed.) Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and Harmonic analysis

  19. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  20. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer Monographs in Mathematics. Springer, Berlin (2004)

    MATH  Google Scholar 

  21. Edmunds, D.E., Rákosník, J.: Sobolev embeddings with variable exponent. Studia Math. 143(3), 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  23. Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302(2), 306–317 (2005)

    MathSciNet  Google Scholar 

  24. Farroni, F., Fiorenza, A., Giova, R.: A sharp blow-up estimate for the Lebesgue norm. Rev. Mat. Complut. 32, 745–766 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Fiorenza, A.: An inequality for Jensen means. Nonlinear Anal. 16(2), 191–198 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Fiorenza, A., Formica, M.R., Gogatishvili, A.: On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s. Differ. Equ. Appl. 10(1), 21–46 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Fiorenza, A., Giannetti, F.: On Orlicz capacities and a nonexistence result for certain elliptic PDEs. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1949–1958 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Frehse, J.: Capacity methods in the theory of partial differential equations. Jahresber. Deutsch. Math. Verein. 84(1), 1–44 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Giannetti, F., Passarelli di Napoli, A.: Regularity results for minimizers of integral functionals with nonstandard growth in Carnot-Carathéodory spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21(2), 175–192 (2010)

  30. Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    MathSciNet  MATH  Google Scholar 

  31. Hakkarainen, H., Nuortio, M.: The variable exponent Sobolev capacity and quasi-fine properties of Sobolev functions in the case \(p^-=1\). J. Math. Anal. Appl. 412(1), 168–180 (2014)

    MathSciNet  Google Scholar 

  32. Harjulehto, P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125–136 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Harjulehto, P., Hästö, P., Koskenoja, M.: Properties of capacities in variable exponent Sobolev spaces. J. Anal. Appl. 5(2), 71–92 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity on the space \(W^{1, p(\cdot )}({\mathbb{R}}^n)\). J. Funct. Spaces Appl. 1(1), 17–33 (2003)

    MathSciNet  Google Scholar 

  35. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25(3), 205–222 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  37. Khamsi, M.A., Kozlowski, W.M.: Fixed Point Theory in Modular Function Spaces. Springer International Publishing Switzerland, Cham (2015)

    MATH  Google Scholar 

  38. Kilpeläinen, T.: Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1), 95–113 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Kilpeläinen, T.: A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci. Fenn. Math. 23(1), 261–262 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12(3), 233–247 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21(2), 367–382 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Klimov, V.S., Panasenko, E.S.: Functional inequalities and relative capacities (Russian). Mat. Zametki 72, 216–226 (2002). Transl. Math. Notes 72(193–203), 2002

    MathSciNet  MATH  Google Scholar 

  43. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41(4), 592–618 (1991)

    MathSciNet  Google Scholar 

  44. Kozlowski, W.M.: Modular Function Spaces, Volume 122 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc, New York (1988)

    Google Scholar 

  45. Kreĭn, S.G., Petunīn, Y.I., Semënov, E.M: Interpolation of Linear Operators, volume 54 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I., (1982). Translated from the Russian by J. Szűcs

  46. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    MATH  Google Scholar 

  47. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Function Spaces. Springer, Berlin (1979)

    MATH  Google Scholar 

  48. Maeda, F.-Y.: Poincaré type inequalities for variable exponents. JIPAM. J. Inequal. Pure Appl. Math., 9(3), 68 (2008)

  49. Maligranda, L.: Orlicz Spaces and Interpolation, Volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989)

    Google Scholar 

  50. Malý, J., Swanson, D., Ziemer, W.P.: Fine behavior of functions whose gradients are in an Orlicz space. Studia Math. 190(1), 33–71 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Mercaldo, A., Rossi, J.D., Segura de León, S., Trombetti, C.: Behaviour of \(p\)-Laplacian problems with Neumann boundary conditions when \(p\) goes to 1. Commun. Pure Appl. Anal. 12(1), 253–267 (2013)

    MathSciNet  Google Scholar 

  52. Meyers, N.G.: A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand. 26, 255–292 (1970)

    MathSciNet  MATH  Google Scholar 

  53. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Musielak–Orlicz spaces. Manuscripta Math. 155(1–2), 209–227 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Musielak, J.: Orlicz Spaces and Modular Spaces, Volume 1034 of Lecture Notes in Mathematics. Springer, Berlin (1983)

    Google Scholar 

  55. Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces. Czechoslovak Math. J. 66(2), 371–394 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Pick, L., Kufner, A., John, O., Fučík, S.: Function spaces. Vol. 1, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications, extended edn. Walter de Gruyter & Co., Berlin (2013)

    Google Scholar 

  57. Ponce, A.C.: Elliptic PDEs, Measures and Capacities, Volume 23 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, (2016). From the Poisson equations to nonlinear Thomas-Fermi problems

  58. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  59. Youssfi, A., Ahmida, Y.: Poincaré-type inequalities in Musielak spaces. Ann. Acad. Sci. Fenn. 44(2), 1041–1054 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their careful reading of the paper. In the present version a gap discovered in the first revision of the paper has been corrected.

Funding

The research of the second author was partly funded by (i) FFABR 2017 - Fondo di finanziamento alle attività di base della ricerca (ii) GNAMPA: Progetto di ricerca 2019: “Stime a priori per il problema dell’ostacolo sotto ipotesi minimali di regolarità”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Giannetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorenza, A., Giannetti, F. Removability of zero modular capacity sets. Rev Mat Complut 34, 511–540 (2021). https://doi.org/10.1007/s13163-020-00361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-020-00361-z

Keywords

Mathematics Subject Classification

Navigation