Chirality of real non-singular cubic fourfolds and their pure deformation classification

...I’ll tell you all my ideas about Looking-glass House. First, there’s the room you can see through the glass - that’s just the same as our drawing room, only the things go the other way ...

Lewis Carroll, Through the Looking-Glass, and What Alice Found There. .

Abstract

In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Allcock, D., Carlson, J.A., Toledo, D.: Hyperbolic geometry and moduli of real cubic surfaces. Ann. Sci. Éc. Norm. Supér. 43(1), 69–115 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Borel, A.: Introduction aux groupes arithmétiques. Hermann, Paris (1969)

    MATH  Google Scholar 

  3. 3.

    Bourbaki, N.: Groupes et Algebres de Lie II. Hermann, Paris (1968)

    MATH  Google Scholar 

  4. 4.

    Chu, K.C.K.: On the geometry of the moduli space of real binary octics. Canad. J. Math. 63(4), 755–797 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    Book  Google Scholar 

  6. 6.

    Finashin, S., Kharlamov, V.: Deformation classes of real four-dimensional cubic hypersurfaces. J. Alg. Geom. 17, 677–707 (2008)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Finashin, S., Kharlamov, V.: On the deformation chirality of real cubic fourfolds. Compositio Math. 145(5), 1277–1304 (2009)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Finashin, S., Kharlamov, V.: Topology of real cubic fourfolds. J. Topol. 3(1), 1–28 (2010)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Heckman, G., Rieken, S.: Hyperbolic geometry and moduli of real curves of genus three. Math. Ann. 370(3–4), 1321–1360 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kharlamov, V.: On classification of nonsingular surfaces of degree 4 in \({{\mathbb{R}}} P^3\) with respect to rigid isotopies. Funkt. Anal. i Priloz. 18(1), 49–56 (1984)

    Google Scholar 

  11. 11.

    Kharlamov, V.: On non-amphichaeral surfaces of degree 4 in \({{\mathbb{R}}} P^3\). Lecture Notes Math. 1346, 349–356 (1988)

    Article  Google Scholar 

  12. 12.

    Klein, F.: Über Flachen dritter Ordnung. Math. Ann. 6, 551–581 (1873)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Laza, R.: The moduli space of cubic fourfolds via the period map. Ann. Math. 172(1), 673–711 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Laza, R., Pearlstein, G., Zhang, Z.: On the moduli space of pairs consisting of a cubic threefold and a hyperplane. Adv. Math. 340, 684–722 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Looijenga, E.: The period map for cubic fourfolds. Invent. Math. 177(1), 213–233 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Mcleod, J.: Hyperbolic reflection groups associated to the quadratic forms \(-3x_0^2+x_1^2+\dots +x_n^2\). Geom. Dedicata. 152, 1–16 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nikulin, V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177 (1979)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Nikulin, V.: On connected components of moduli of real polarized K3 surfaces. Izv. Math. 72(1), 91–111 (2008)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Nikulin, V., Saito, S.: Real K3 surfaces with non-symplectic involution and applications. II. Proc. Lond. Math. Soc. 95(1), 20–48 (2007)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Vinberg, E.B.: Hyperbolic reflection groups. Rus. Math. Surv. 40(1), 31–75 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The main part of this research was completed during the first author’s visit to Université de Strasbourg. The last touch was made during Research in Pairs in Mathematisches Forschungsinstitut Oberwolfach. We thank these institutions for their hospitality. We also wish to thank the referee for helpful remarks and suggestions. The second author was partially funded by the Grant ANR-18-CE40-0009 of Agence Nationale de Recherche.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Finashin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finashin, S., Kharlamov, V. Chirality of real non-singular cubic fourfolds and their pure deformation classification. Rev Mat Complut 34, 19–41 (2021). https://doi.org/10.1007/s13163-020-00351-1

Download citation

Keywords

  • Real cubic fourfold
  • Deformation chirality
  • Period map
  • Coxeter graphs

Mathematics Subject Classification

  • Primary 14P25
  • Secondary 14J10
  • 14N25
  • 14J35
  • 14J70