Skip to main content
Log in

Néron models of intermediate Jacobians associated to moduli spaces

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Let \(\pi _1:\mathcal {X} \rightarrow \Delta \) be a flat family of smooth, projective curves of genus \(g \ge 2\), degenerating to an irreducible nodal curve \(X_0\) with exactly one node. Fix an invertible sheaf \(\mathcal {L}\) on \(\mathcal {X}\) of relative odd degree. Let \(\pi _2:\mathcal {G}(2,\mathcal {L}) \rightarrow \Delta \) be the relative Gieseker moduli space of rank 2 semi-stable vector bundles with determinant \(\mathcal {L}\) over \(\mathcal {X}\). Since \(\pi _2\) is smooth over \(\Delta ^*\), there exists a canonical family \(\widetilde{\rho }_i:\mathbf {J}^i_{\mathcal {G}(2, \mathcal {L})_{\Delta ^*}} \rightarrow \Delta ^{*}\) of i-th intermediate Jacobians i.e., for all \(t \in \Delta ^*\), \((\widetilde{\rho }_i)^{-1}(t)\) is the i-th intermediate Jacobian of \(\pi _2^{-1}(t)\). There exist different Néron models \(\overline{\rho }_i:\overline{\mathbf {J}}_{\mathcal {G}(2, \mathcal {L})}^i \rightarrow \Delta \) extending \(\widetilde{\rho }_i\) to the entire disc \(\Delta \), constructed by Clemens, Saito, Schnell, Zucker and Green–Griffiths–Kerr. In this article, we prove that in our setup, the Néron model \(\overline{\rho }_i\) is canonical in the sense that the different Néron models coincide and is an analytic fiber space which graphs admissible normal functions. We also show that for \(1 \le i \le \max \{2,g-1\}\), the central fiber of \(\overline{\rho }_i\) is a fibration over product of copies of \(J^k(\mathrm {Jac}(\widetilde{X}_0))\) for certain values of k, where \(\widetilde{X}_0\) is the normalization of \(X_0\). In particular, for \(g \ge 5\) and \(i=2, 3, 4\), the central fiber of \(\overline{\rho }_i\) is a semi-abelian variety. Furthermore, we prove that the i-th generalized intermediate Jacobian of the (singular) central fibre of \(\pi _2\) is a fibration over the central fibre of the Néron model \(\overline{\mathbf {J}}^i_{\mathcal {G}(2, \mathcal {L})}\). In fact, for \(i=2\) the fibration is an isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(X_0,x_0\) :

Irreducible nodal curve \(X_0\) with node at \(x_0\)

\(\pi : \widetilde{X}_0 \rightarrow X_0\) :

Normalization of \(X_0\)

\(\Delta , \Delta ^*\) :

Open, unit disc \(\Delta \) and \(\Delta ^*:=\Delta \backslash \{0\}\)

\(\rho : \mathcal {Y} \rightarrow \Delta \) :

Family of projective varieties, smooth over \(\Delta ^*\)

\(\mathcal {Y}_t\) :

The fiber \(\rho ^{-1}(t)\) for any \(t \in \Delta \)

\(\mathcal {Y}_\infty \) :

The base change of the family \(\rho \) under the natural morphism \(\mathfrak {h} \rightarrow \Delta ^* \hookrightarrow \Delta \), where \(\mathfrak {h}\) is the universal covering of \(\Delta ^*\)

\(\mathcal {Y}_{\Delta ^*}\) :

restriction of \(\mathcal {Y}\) to \(\Delta ^*\)

\(\mathcal {H}^i_{\mathcal {Y}_{\Delta ^*}}, F^p\mathcal {H}^i_{\mathcal {Y}_{\Delta ^*}}\) :

Hodge bundles associated to the family \(\mathcal {Y}_{\Delta ^*}\)

\(\overline{\mathcal {H}}^i_{\mathcal {Y}_{\Delta ^*}}, F^p\overline{\mathcal {H}}^i_{\mathcal {Y}_{\Delta ^*}}\) :

Canonical extensions of \(\mathcal {H}^i_{\mathcal {Y}_{\Delta ^*}}, F^p\mathcal {H}^i_{\mathcal {Y}_{\Delta ^*}}\), respectively

\(\widetilde{\rho }: \mathbf {J}^i_{\mathcal {Y}_{\Delta ^*}} \rightarrow \Delta ^*\) :

Family of i-th intermediate Jacobians associated to \(\mathcal {Y}_{\Delta ^*}\)

\(\overline{\rho }: \overline{\mathbf {J}}^i_{\mathcal {Y}} \rightarrow \Delta \) :

Néron model associated to \(\widetilde{\rho }\)

\(T_{s,i}, T_{s,i}^{\mathbb {Q}}\) :

Local monodromy transformation associated to \(\rho \)

\(T_i:H^i(\mathcal {Y}_\infty , \mathbb {Q}) \rightarrow H^i(\mathcal {Y}_\infty , \mathbb {Q})\) :

Limit monodromy transformation

\(N_i\) :

\(\log (T_i)\)

\(\mathrm {sp}_i: H^i(\mathcal {Y}_0,\mathbb {Z}) \rightarrow H^i(\mathcal {Y}_\infty , \mathbb {Z})\) :

Specialization morphism

\(M_Y(2,\mathcal {L}')\) :

Moduli space of rank 2, semi-stable sheaves with determinant \(\mathcal {L}'\) over Y

\(\pi _1: \mathcal {X} \rightarrow \Delta \) :

Family of projective curves with central fiber \(X_0\), smooth over \(\Delta ^*\)

\(\mathcal {L}, \mathcal {L}_0, \widetilde{\mathcal {L}}_0\) :

Odd degree invertible sheaf \(\mathcal {L}\) on \(\mathcal {X}\), \(\mathcal {L}_0:=\mathcal {L}|_{X_0}\), \(\widetilde{\mathcal {L}}_0:=\pi ^*\mathcal {L}_0\)

\(\widetilde{\pi }_1: \widetilde{\mathcal {X}} \rightarrow \mathcal {X} \xrightarrow {\pi } \Delta \) :

Blow-up of \(\mathcal {X}\) at \(x_0\)

\(\pi _2: \mathcal {G}(2,\mathcal {L}) \rightarrow \Delta \) :

Relative Gieseker moduli space associated to \(\pi _1\)

\(\mathcal {G}_{X_0}(2,\mathcal {L}_0)\) :

Central fiber of the moduli space \(\mathcal {G}(2,\mathcal {L})\)

\(\mathcal {G}_0, \mathcal {G}_1\) :

The two irreducible components of \(\mathcal {G}_{X_0}(2,\mathcal {L}_0)\)

References

  1. Abe, T.: The moduli stack of rank-two Gieseker bundles with fixed determinant on a nodal curve ii. Int. J. Math. 20(07), 859–882 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Alexeev, V.: Compactified jacobians and Torelli map. Publ. Res. Inst. Math. Sci. 40(4), 1241–1265 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 308(1505), 523–615 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Balaji, V.: Intermediate Jacobian of some moduli spaces of vector bundles on curves. Am. J. Math. 112(4), 611–629 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Basu, S., Dan, A., Kaur, I.: Degeneration of intermediate Jacobians and the Torelli theorem. Documenta Mathematica (to appear) (2019)

  6. Birkenhake, C., Lange, H.: Complex Abelian Varieties, vol. 302. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models, vol. 21. Springer, Berin (2012)

    MATH  Google Scholar 

  8. Brosnan, P., Pearlstein, G., Saito, M.: A generalization of the Néron models of Green, Griffiths and Kerr. arXiv preprint arXiv:0809.5185 (2008)

  9. Caporaso, L.: Néron models and compactified Picard schemes over the moduli stack of stable curves. Am. J. Math. 130(1), 1–47 (2008)

    MATH  Google Scholar 

  10. Casalaina-Martin, S., Laza, R.: The moduli space of cubic threefolds via degenerations of the intermediate Jacobian. Journal für die reine und angewandte Mathematik (Crelles Journal) 2009(633), 29–65 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Dan, A., Kaur, I.: Generalization of a conjecture of mumford. arXiv preprint arXiv:1908.02279 (2019)

  13. del Baño, S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compos. Math. 131(1), 1–30 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Deligne, P.: Théoreme de Lefschetz et criteres de dégénérescence de suites spectrales. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 35(1), 107–126 (1968)

    MATH  Google Scholar 

  15. Deligne, P.: Équations Différentielles à Points Singuliers Réguliers, vol. 163. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Esteves, E.: Compactifying the relative Jacobian over families of reduced curves. Trans. Am. Math. Soc. 353(8), 3045–3095 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Fulton, W.: Intersection Theory, vol. 2. Springer, Berlin (2013)

    MATH  Google Scholar 

  18. Gieseker, D.: A degeneration of the moduli space of stable bundles. J. Differ. Geom. 19(1), 173–206 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Green, M., Griffiths, P., Kerr, M.: Néron models and limits of Abel–Jacobi mappings. Compos. Math. 146(2), 288–366 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Griffiths, P., Harris, J.: Infinitesimal variations of Hodge structure (II): an infinitesimal invariant of Hodge classes. Compos. Math. 50(2–3), 207–265 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Griffiths, P .A.: Periods of integrals on algebraic manifolds, I. (construction and properties of the modular varieties). Am. J. Math. 90(2), 568–626 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Griffiths, P.A.: Periods of integrals on algebraic manifolds, II: (local study of the period mapping). Am. J. Math. 90(3), 805–865 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Griffiths, P.A.: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems. Bull. Am. Math. Soc. 76(2), 228–296 (1970)

    MathSciNet  MATH  Google Scholar 

  24. Höring, A.: Minimal classes on the intermediate Jacobian of a generic cubic threefold. Commun. Contemp. Math. 12(01), 55–70 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Springer, Berlin (2010)

    MATH  Google Scholar 

  26. Javanpeykar, A., Loughran, D.: Complete intersections: moduli, Torelli, and good reduction. Math. Ann. 368(3–4), 1191–1225 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Kanev, V.: Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces. Annali di Matematica Pura ed Applicata 154(1), 13–48 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Kaur, I.: The \({C_1}\) conjecture for the moduli space of stable vector bundles with fixed determinant on a smooth projective curve. Ph. d. thesis, Freie University Berlin (2016)

  29. Kaur, I.: Smoothness of moduli space of stable torsionfree sheaves with fixed determinant in mixed characteristic. In: Analytic and Algebraic Geometry, pp. 173–186. Springer, Singapore (2017)

  30. Kaur, I.: Existence of semistable vector bundles with fixed determinants. J. Geom. Phys. 138, 90–102 (2019)

    MathSciNet  MATH  Google Scholar 

  31. King, A.D., Newstead, P.E.: On the cohomology ring of the moduli space of rank 2 vector bundles on a curve. Topology 37(2), 407–418 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Kulikov, V.S.: Mixed Hodge Structures and Singularities, vol. 132. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  33. Mumford, D., Newstead, P.: Periods of a moduli space of bundles on curves. Am. J. Math. 90(4), 1200–1208 (1968)

    MathSciNet  MATH  Google Scholar 

  34. Newstead, P.E.: Topological properties of some spaces of stable bundles. Topology 6(2), 241–262 (1967)

    MathSciNet  MATH  Google Scholar 

  35. Newstead, P.E.: Characteristic classes of stable bundles of rank 2 over an algebraic curve. Trans. Am. Math. Soc. 169, 337–345 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Pandharipande, R.: A compactification over \(M_g\) of the universal moduli space of slope-semistable vector bundles. J. Am. Math. Soc. 9(2), 425–471 (1996)

    MATH  Google Scholar 

  37. Peters, C., Steenbrink, J.H.M.: Mixed Hodge Structures, vol. 52. Springer, Berlin (2008)

    MATH  Google Scholar 

  38. Pezzini, G.: Lectures on spherical and wonderful varieties. Les cours du CIRM 1(1), 33–53 (2010)

    Google Scholar 

  39. Saito, M.: Admissible normal functions. J. Algebraic Geom. 5(2), 235–276 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Saito, M.: Hausdorff property of the Néron models of Green, Griffiths and Kerr. arXiv preprint arXiv:0803.2771 (2008)

  41. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22(3–4), 211–319 (1973)

    MathSciNet  MATH  Google Scholar 

  42. Schnell, C.: Complex analytic Néron models for arbitrary families of intermediate Jacobians. Invent. Math. 188(1), 1–81 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Seshadri, C. S.: Degenerations of the moduli spaces of vector bundles on curves. ICTP Lecture Notes, 1 (2000)

  44. Steenbrink, J.: Limits of Hodge structures. Invent. Math. 31, 229–257 (1976)

    MathSciNet  MATH  Google Scholar 

  45. Sun, X.: Moduli spaces of SL(r)-bundles on singular irreducible curves. Asia J. Math. 7(4), 609–625 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Thaddeus, M.: Algebraic geometry and the Verlinde formula. PhD thesis, University of Oxford (1992)

  47. Voisin, C.: Hodge Theory and Complex Algebraic Geometry-I. Cambridge Studies in Advanced Mathematics-76. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  48. Voisin, C.: Hodge Theory and Complex Algebraic Geometry-II. Cambridge Studies in Advanced Mathematics-77. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  49. Zucker, S.: Generalized intermediate Jacobians and the theorem on normal functions. Invent. Math. 33(3), 185–222 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. J. F. de Bobadilla, Dr. B. Sigurdsson and Dr. S. Basu for numerous discussions. The first author is currently supported by ERCEA Consolidator Grant 615655-NMST and also by the Basque Government through the BERC \(2014-2017\) program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-\(2013-0323\). The second author is funded by CAPES-PNPD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananyo Dan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan, A., Kaur, I. Néron models of intermediate Jacobians associated to moduli spaces. Rev Mat Complut 33, 885–910 (2020). https://doi.org/10.1007/s13163-019-00333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00333-y

Keywords

Mathematics Subject Classification

Navigation