Abstract
We consider rational surfaces Z defined by divisorial valuations \(\nu \) of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equivalent conditions. In particular we prove that, when \(\nu \) is non-positive at infinity, the extremal rays of the cone of curves of Z can be explicitly given.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54
Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996)
Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980)
Campillo, A., Piltant, O., Reguera, A.: Curves and divisors on surfaces associated to plane curves with one place at infinity. Proc. Lond. Math. Soc. 84, 559–580 (2002)
Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)
Ciliberto, C., Farnik, M., Küronya, A., Lozovanu, V., Roé, J., Shramov, C.: Newton–Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo 2(66), 161–194 (2017)
Cutkosky, S.D., Ein, L., Lazarsfeld, R.: Positivity and complexity of ideal sheaves. Math. Ann. 321(2), 213–234 (2001)
de la Rosa-Navarro, B.L., Frías-Medina, J.B., Lahyane, M.: Rational surfaces with finitely generated Cox rings and very high Picard numbers. RACSAM 111, 297–306 (2017)
Delgado, F., Galindo, C., Núñez, A.: Saturation for valuations on two-dimensional regular local rings. Math. Z. 234, 519–550 (2000)
Demailly, J.P.: Singular Hermitian metrics on positive line bundles. Complex Algebraic Varieties (Bayreuth, 1990). Lecture Notes in Mathematics, vol. 1507, pp. 87–104. Springer, Berlin (1992)
Dumnicki, M., Harbourne, B., Küronya, A., Roé, J., Szemberg, T.: Very general monomial valuations of \(\mathbb{P}^2\) and a Nagata type conjecture. Commun. Anal. Geom. 25, 125–161 (2017)
Favre, C., Jonsson, M.: The Valuative Tree. Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004)
Favre, C., Jonsson, M.: Eigenvaluations. Ann. Sci. Éc. Norm. Sup. 40, 309–349 (2007)
Favre, C., Jonsson, M.: Dynamical compactifications of \(\mathbb{C}^2\). Ann. Math. 173, 211–248 (2011)
Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)
Galindo, C., Monserrat, F.: The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290, 1040–1061 (2016)
Galindo, C., Monserrat, F., Moyano-Fernández, J.: Minimal plane valuations. J. Algebraic Geom. 27, 751–783 (2018)
Galindo, C., Monserrat, F., Moyano-Fernández, J., Nickel, M.: Newton-Okounkov bodies of exceptional curve valuations. arXiv:1705.03948 (2017)
Greco, S., Kiyek, K.: General elements of complete ideals and valuations centered at a two-dimensional regular local ring. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), pp. 381–455. Springer, Berlin (2004)
Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)
Iitaka, S.: On \(D\)-dimensions of algebraic varieties. J. Math. Soc. Jpn. 23, 356–373 (1971)
Jonsson, M.: Dynamics on Berkovich Spaces in Low Dimensions. Springer, Berlin (2015)
Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)
Kollar, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)
Moe, T.K.: Cuspidal curves on Hirzebruch surfaces. PhD thesis, Department of Mathematics, University of Oslo. https://www.duo.uio.no/handle/10852/37197 (2013). Accessed 23 Nov 2018
Mondal, P.: How to determine the sign of a valuation on \(\mathbb{C}[x, y]\). Mich. Math. J. 66, 227–244 (2017)
Okounkov, A.: Why would multiplicities be log-concave? In: Duval, C., Ovsienko, V., Guieu, L. (eds.) The Orbit Method in Geometry and Physics (Marseille, 2000). Progress in Mathematics, vol. 213. Birkhäuser, Boston (2003)
Reid, M.: Chapters on algebraic surfaces. In: Kollár, J. (ed.) Complex Algebraic Geometry (Park city, UT, 1993). IAS/Park City Lecture Notes Series, vol. 3, pp. 3–159. American Mathematical Society, Providence (1997)
Spivakovsky, M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)
Teissier, B.: Valuations, deformations, and toric geometry. In: Kuhlmann, F.-Z., Kuhlmann, S., Marshall, M. (eds.) Valuation Theory and Its Applications, II (Saskatoon, SK, 1999). Fields Institute Communications, vol. 333. American Mathematical Society, Providence (1999)
Zariski, O., Samuel, P.: Commutative Algebra II. Vol. II. Graduate Texts in Mathematics, vol. 29. Springer, Berlin (1975)
Acknowledgements
The authors thank M. Jonsson and W. Veys for valuable comments which helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partially supported by the Spanish Government Ministerio de Economía, Industria y Competitividad (MINECO), Grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, PGC2018-096446-B-C22 and BES-2016-076314, as well as by Universitat Jaume I, Grant UJI-B2018-10.
Rights and permissions
About this article
Cite this article
Galindo, C., Monserrat, F. & Moreno-Ávila, CJ. Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Rev Mat Complut 33, 349–372 (2020). https://doi.org/10.1007/s13163-019-00319-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-019-00319-w