Revista Matemática Complutense

, Volume 32, Issue 2, pp 353–364 | Cite as

The free Banach lattices generated by \(\ell _p\) and \(c_0\)

  • Antonio Avilés
  • Pedro TradaceteEmail author
  • Ignacio Villanueva


We prove that, when \(2<p<\infty \), in the free Banach lattice generated by \(\ell _p\) (respectively by \(c_0\)), the absolute values of the canonical basis form an \(\ell _r\)-sequence, where \(\frac{1}{r} = \frac{1}{2} + \frac{1}{p}\) (respectively an \(\ell _2\)-sequence). In particular, in any Banach lattice, the absolute values of any \(\ell _p\) sequence always have an upper \(\ell _r\)-estimate. Quite surprisingly, this implies that the free Banach lattices generated by the nonseparable \(\ell _p(\Gamma )\) for \(2<p<\infty \), as well as \(c_0(\Gamma )\), are weakly compactly generated whereas this is not the case for \(1\le p\le 2\).


Banach lattice Free lattice Weakly compactly generated space 

Mathematics Subject Classification

46B42 46B25 



  1. 1.
    Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics 233. Springer, Berlin (2006)zbMATHGoogle Scholar
  2. 2.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). (Reprint of the 1985 original)CrossRefzbMATHGoogle Scholar
  3. 3.
    Avilés, A., Guirao, A.J., Lajara, S., Rodríguez, J., Tradacete, P.: Weakly compactly generated Banach lattices. Stud. Math. 234(2), 165–183 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avilés, A., Rodríguez, J., Tradacete, P.: The free Banach lattice generated by a Banach space. J. Funct. Anal. 274(10), 2955–2977 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baker, K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bleier, R.D.: Free vector lattices. Trans. Am. Math. Soc. 176, 73–87 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Pagter, B., Wickstead, A.W.: Free and projective Banach lattices. Proc. R. Soc. Edinb. Sect. A 145(1), 105–143 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kalton, N.J.: Lipschitz and uniform embeddings into \(\ell _\infty \). Fundam. Math. 212(1), 53–69 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  11. 11.
    Meyer-Nieberg, P.: Banach Lattices, Universitext. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Weaver, N.: Lipschitz Algebras. World Science, River Edge (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de MurciaMurciaSpain
  2. 2.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)Consejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Departamento de Análisis Matemático y Matemática Aplicada and Instituto de Matemática Interdisciplinar-IMIUniversidad Complutense de MadridMadridSpain

Personalised recommendations