Skip to main content
Log in

Flexibility for tangent and transverse immersions in Engel manifolds

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We study the space of immersions of \({\mathbb {S}}^1\) that are tangent to an Engel structure \({\mathcal {D}}\). We show that the full h-principle holds as soon as one excludes the closed orbits of \({\mathcal {W}}\), the characteristic foliation of \({\mathcal {D}}\). This is sharp: we elaborate on work of Bryant and Hsu to show that curves tangent to \({\mathcal {W}}\) sometimes form additional isolated components that cannot be detected at a formal level. We then show that this is an exceptional phenomenon: if \({\mathcal {D}}\) is \(C^\infty \)-generic, curves tangent to \({\mathcal {W}}\) are not isolated anymore. These results, in conjunction with an argument due to M. Gromov, prove that a full h-principle holds for immersions transverse to the Engel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adachi, J.: Classification of horizontal loops in standard Engel space. Int. Math. Res. Not. 2007, Article ID rnm008 (2007). https://doi.org/10.1093/imrn/rnm008

  2. Bryant, R.L., Hsu, L.: Rigidity of integral curves of rank 2 distributions. Invent. Math. 114(2), 435–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casals, R., del Pino, A.: Classification of Engel knots. Math. Ann. 371, 391–404 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casals, R., Pérez, J.L., del Pino, A., Presas, F.: Existence h-principle for Engel structures. Invent. Math. 210, 417–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eliashberg, Y., Mishachev, N.: Introduction to the h-Principle. Graduate Studies in Mathematics, vol. 48. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  6. Engel, F.: Zur Invariantentheorie der systeme Pfaff’scher Gleichungen. Leipz. Ber. Band. 41, 157176 (1889)

    Google Scholar 

  7. Geiges, H.: Horizontal loops in Engel space. Math. Ann. 342(2), 291–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 9. Springer, Berlin (1986)

    Google Scholar 

  9. Hsu, L.: Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36(3), 551–589 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Montgomery, R.: Engel deformations and contact structures. In: Northern California symplectic geometry seminar. American Mathematical Society. Translations Series 2, vol. 196, no. 45, p. 103–117. American Mathematical Society, Providence, RI (1999)

  11. Peixoto, M.M.: On an approximation theorem of Kupka and Smale. J. Differ. Equ. 3, 214–227 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thurston, W.: The theory of foliations of codimension greater than one. Comment. Math. Helv. 49, 214–231 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vogel, T.: Existence of Engel structures. Ann. Math. (2) 169(1), 79–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Vogel for bringing the problem of transverse submanifolds to their attention, and to V. Ginzburg for the many conversations that gave birth to this Project. They are also thankful to R. Casals, J.L. Pérez, and F.J. Martínez for reading a preliminary version of the paper. Lastly, we thank the referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Presas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pino, Á., Presas, F. Flexibility for tangent and transverse immersions in Engel manifolds. Rev Mat Complut 32, 215–238 (2019). https://doi.org/10.1007/s13163-018-0277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-018-0277-2

Keywords

Mathematics Subject Classification

Navigation