Abstract
We show that an interpolating sequence for the weighted Banach space of analytic functions on the unit ball of a Hilbert space is hyperbolically separated. In the case of the so-called standard weights, a sufficient condition for a sequence to be linear interpolating is given in terms of Carleson type measures. Other conditions to be linearly interpolating are provided as well. Our results apply to the space of Bloch functions of such unit ball.
Similar content being viewed by others
References
Attele, K.R.M.: Interpolating sequences for the derivatives of the Bloch functions. Glasg. Math. J. 34, 35–41 (1992)
Berndtsson, B.: Interpolating sequences for \(H^\infty \) in the ball. Nederl. Akad. Wetensch. Indag. Math. 47(1), 1–10 (1985)
Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Func. Anal. 267, 1188–1204 (2014)
Blasco, O., Galindo, P., Lindström, M., Miralles, A.: Composition operators on the Bloch space of the unit ball of a Hilbert space. Banach J. Math. Anal. 11(2), 311–334 (2017)
Boe, B., Nicolau, A.: Interpolation by functions in the Bloch space. J. Anal. Math. 94, 171–194 (2004)
Carne, T.K., Cole, B., Gamelin, T.W.: A uniform algebra of analytic functions on a Banach space. Trans. Am. Math. Soc. 314(2), 639–659 (1989)
Choe, B.R., Rim, K.S.: Fractional derivatives of Bloch functions, growth rate and interpolation. Acta Math. Hung. 72(1–2), 67–86 (1996)
Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)
Domański, P., Lindström, M.: Sets of interpolation for weighted Banach spaces of holomorphic functions. Ann. Pol. Math. 79(3), 233–264 (2002)
Duren, P., Schuster, A., Vukotić, D.: On Uniformly Discrete Sequences in the Disk, Operator Theory: Advances and Applications. Birkhäuser, Basel (2005)
Galindo, P., Gamelin, T.W., Lindström, M.: Spectra of composition operators on algebras of analytic functions on Banach spaces. Proc. R. Soc. Edinb. 139A, 107–121 (2009)
Galindo, P., Miralles, A.: Interpolating sequences for bounded analytic functions. Proc. Am. Math. Soc. 135(10), 3225–3231 (2007)
Galindo, P., Miralles, A., Lindström, M.: Interpolating sequences on uniform algebras. Topology 48, 111–118 (2009)
Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker Inc, New York (1984)
Hamada, H.: Bloch-type spaces and extended Cesàro operators in the unit ball of a complex Banach space. Sci. China Math. (2018). https://doi.org/10.1007/s11425-017-9183-5
Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679–2687 (1995)
Massaneda, X.: \(A^{-p}\) interpolation in the unit ball. J. Lond. Math. Soc. 52(2), 391–401 (1995)
Mujica, J.: Complex Analysis in Banach Spaces. Dover Books on Mathematics, New York (2010)
Mujica, J.: Linearization of holomorphic mappings on infinite-dimensional spaces. Rev. Un. Mater. Argent. 37, 127–134 (1992)
Miralles, A.: Interpolating sequences for \(H^{\infty }(B_H)\). Quaest. Math. 39(6), 785–795 (2016)
Ng, K.: On a theorem of Dixmier. Math. Scand. 29, 279–280 (1971)
Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Springer, New York (1980)
Seip, K.: Beurling type density theorems in the unit disk. Invent. Math. 113, 21–39 (1993)
Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. American Mathematical Society, Providence (2004)
Tjani, M.: Distance of a Bloch function to the little Bloch space. Bull. Aust. Math. Soc. 74(1), 101–119 (2006)
Xiao, J.: Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1), 35–46 (1994)
Xu, Z.: Bloch type spaces in the unit ball of a Hilbert space (2018). arXiv:1611.10227v2 [math.CV]
Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics. Springer, Berlin (2005)
Acknowledgements
This paper was completed during the 2016 fall semester while Mikael Lindström was visiting Universidad de Valencia whose hospitality is gratefully acknowledged with special thanks to Pablo Galindo. We warmly thank the referees for their very careful reading and the suggestions provided.
Author information
Authors and Affiliations
Corresponding author
Additional information
O. Blasco: partially supported by MTM2014-53009-P. P. Galindo: partially supported by MTM2014-53241-P. M. Lindström: partially supported by MTM2014-53241-P and the Academy of Finland project 296718. A. Miralles: partially supported by MTM2014-53241-P, P1-1B2014-35 and AICO/2016/030.
Rights and permissions
About this article
Cite this article
Blasco, O., Galindo, P., Lindström, M. et al. Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space. Rev Mat Complut 32, 115–139 (2019). https://doi.org/10.1007/s13163-018-0271-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-018-0271-8
Keywords
- Interpolating sequence
- Hyperbolically separated
- Bloch function in the ball
- Infinite dimensional holomorphy
- Weighted space of analytic functions