Skip to main content
Log in

Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We show that an interpolating sequence for the weighted Banach space of analytic functions on the unit ball of a Hilbert space is hyperbolically separated. In the case of the so-called standard weights, a sufficient condition for a sequence to be linear interpolating is given in terms of Carleson type measures. Other conditions to be linearly interpolating are provided as well. Our results apply to the space of Bloch functions of such unit ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attele, K.R.M.: Interpolating sequences for the derivatives of the Bloch functions. Glasg. Math. J. 34, 35–41 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndtsson, B.: Interpolating sequences for \(H^\infty \) in the ball. Nederl. Akad. Wetensch. Indag. Math. 47(1), 1–10 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Func. Anal. 267, 1188–1204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blasco, O., Galindo, P., Lindström, M., Miralles, A.: Composition operators on the Bloch space of the unit ball of a Hilbert space. Banach J. Math. Anal. 11(2), 311–334 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boe, B., Nicolau, A.: Interpolation by functions in the Bloch space. J. Anal. Math. 94, 171–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carne, T.K., Cole, B., Gamelin, T.W.: A uniform algebra of analytic functions on a Banach space. Trans. Am. Math. Soc. 314(2), 639–659 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choe, B.R., Rim, K.S.: Fractional derivatives of Bloch functions, growth rate and interpolation. Acta Math. Hung. 72(1–2), 67–86 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  9. Domański, P., Lindström, M.: Sets of interpolation for weighted Banach spaces of holomorphic functions. Ann. Pol. Math. 79(3), 233–264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duren, P., Schuster, A., Vukotić, D.: On Uniformly Discrete Sequences in the Disk, Operator Theory: Advances and Applications. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  11. Galindo, P., Gamelin, T.W., Lindström, M.: Spectra of composition operators on algebras of analytic functions on Banach spaces. Proc. R. Soc. Edinb. 139A, 107–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galindo, P., Miralles, A.: Interpolating sequences for bounded analytic functions. Proc. Am. Math. Soc. 135(10), 3225–3231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galindo, P., Miralles, A., Lindström, M.: Interpolating sequences on uniform algebras. Topology 48, 111–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker Inc, New York (1984)

    MATH  Google Scholar 

  16. Hamada, H.: Bloch-type spaces and extended Cesàro operators in the unit ball of a complex Banach space. Sci. China Math. (2018). https://doi.org/10.1007/s11425-017-9183-5

  17. Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679–2687 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Massaneda, X.: \(A^{-p}\) interpolation in the unit ball. J. Lond. Math. Soc. 52(2), 391–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mujica, J.: Complex Analysis in Banach Spaces. Dover Books on Mathematics, New York (2010)

    Google Scholar 

  20. Mujica, J.: Linearization of holomorphic mappings on infinite-dimensional spaces. Rev. Un. Mater. Argent. 37, 127–134 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Miralles, A.: Interpolating sequences for \(H^{\infty }(B_H)\). Quaest. Math. 39(6), 785–795 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ng, K.: On a theorem of Dixmier. Math. Scand. 29, 279–280 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Springer, New York (1980)

    Book  MATH  Google Scholar 

  24. Seip, K.: Beurling type density theorems in the unit disk. Invent. Math. 113, 21–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. American Mathematical Society, Providence (2004)

    Google Scholar 

  26. Tjani, M.: Distance of a Bloch function to the little Bloch space. Bull. Aust. Math. Soc. 74(1), 101–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiao, J.: Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1), 35–46 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Xu, Z.: Bloch type spaces in the unit ball of a Hilbert space (2018). arXiv:1611.10227v2 [math.CV]

  29. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgements

This paper was completed during the 2016 fall semester while Mikael Lindström was visiting Universidad de Valencia whose hospitality is gratefully acknowledged with special thanks to Pablo Galindo. We warmly thank the referees for their very careful reading and the suggestions provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Miralles.

Additional information

O. Blasco: partially supported by MTM2014-53009-P. P. Galindo: partially supported by MTM2014-53241-P. M. Lindström: partially supported by MTM2014-53241-P and the Academy of Finland project 296718. A. Miralles: partially supported by MTM2014-53241-P, P1-1B2014-35 and AICO/2016/030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasco, O., Galindo, P., Lindström, M. et al. Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space. Rev Mat Complut 32, 115–139 (2019). https://doi.org/10.1007/s13163-018-0271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-018-0271-8

Keywords

Mathematics Subject Classification

Navigation