Rational homotopy and intersection-formality of complex algebraic varieties
- 106 Downloads
Abstract
A homotopical treatment of intersection cohomology recently developed by Chataur–Saralegui–Tanré associates a perverse algebraic model to every topological pseudomanifold, extending Sullivan’s presentation of rational homotopy theory to intersection cohomology. In this context, there is a notion of intersection-formality, measuring the vanishing of higher Massey products in intersection cohomology. In the present paper, we study the perverse algebraic model of complex projective varieties with isolated singularities. We then use mixed Hodge theory to prove some intersection-formality results for large families of complex projective varieties, such as isolated surface singularities and varieties of arbitrary dimension with ordinary isolated singularities.
Keywords
Rational homotopy Formality Intersection cohomology Mixed Hodge theory Weight spectral sequence Isolated singularitiesMathematics Subject Classification
55P62 55N33 32S35References
- 1.Banagl, M.: Intersection Spaces, Spatial Homology Truncation, and String Theory. Lecture Notes in Mathematics, vol. 1997. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
- 2.Chataur, D., Cirici, J.: Rational homotopy of complex projective varieties with normal isolated singularities. Forum Math. 29(1), 41–57 (2017)MathSciNetCrossRefGoogle Scholar
- 3.Chataur, D., Saralegi, M., Tanré, D.: Intersection cohomology. Simplicial blow-up and rational homotopy. Mem. Amer. Math. Soc. (to appear)Google Scholar
- 4.Cirici, J.: Cofibrant models of diagrams: mixed Hodge structures in rational homotopy. Trans. Am. Math. Soc. 367(8), 5935–5970 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Cirici, J., Guillén, F.: \(E_1\)-formality of complex algebraic varieties. Algebra Geom. Topol. 14(5), 3049–3079 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Cirici, J., Horel, G.: Mixed Hodge structures and formality of symmetric monoidal functors. arXiv:1703.06816 [math.AT] (2017)
- 7.Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)CrossRefzbMATHGoogle Scholar
- 9.Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
- 11.Durfee, A.: Mixed Hodge structures on punctured neighborhoods. Duke Math. J. 50(4), 1017–1040 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Durfee, A.: Neighborhoods of algebraic sets. Trans. Am. Math. Soc. 276(2), 517–530 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Durfee, A.H., Hain, R.M.: Mixed Hodge structures on the homotopy of links. Math. Ann. 280(1), 69–83 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Friedman, G.: On the chain-level intersection pairing for PL pseudomanifolds. Homol. Homotopy Appl. 11(1), 261–314 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Friedman, G., McClure, J.E.: Cup and cap products in intersection (co)homology. Adv. Math. 240, 383–426 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Goresky, M.: Intersection homology operations. Comment. Math. Helv. 59(3), 485–505 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Hain, R.M.: The de Rham homotopy theory of complex algebraic varieties. II. K-Theory 1(5), 481–497 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235–252 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Hovey, M.: Intersection homological algebra. In: New Topological Contexts for Galois Theory and Algebraic Geometry (BIRS 2008), Geometry & Topology Monographs, vol. 16, pp. 133–150. Geometry & Topology Publications, Coventry (2009)Google Scholar
- 22.Kapovich, M., Kollár, J.: Fundamental groups of links of isolated singularities. J. Am. Math. Soc. 27(4), 929–952 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton (1968)Google Scholar
- 24.Morgan, J.W.: The algebraic topology of smooth algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 48, 137–204 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Navarro-Aznar, V.: Sur la théorie de Hodge des variétés algébriques à singularités isolées. Systémes différentiels et singularités, Astérisque, vol. 130, pp. 272–307. Société Mathématique de France, Paris (1985)Google Scholar
- 26.Navarro-Aznar, V.: Sur la théorie de Hodge-Deligne. Invent. Math. 90(1), 11–76 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Peters, C., Steenbrink, J.: Mixed Hodge Structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 52. Springer, Berlin (2008)Google Scholar
- 28.Polizzi, F., Rapagnetta, A., Sabatino, P.: On factoriality of threefolds with isolated singularities. Mich. Math. J. 63(4), 781–801 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Saito, M.: Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Saito, M.: Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Simpson, C.: Local systems on proper algebraic \(V\)-manifolds. Pure Appl. Math. Q. 7(4), 1675–1759 (2011). (Special Issue: In memory of Eckart Viehweg)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. In: Singularities, Part 2 (Arcata, California, 1981), Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 513–536. American Mathematical Society, Providence, RI (1983)Google Scholar
- 33.Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Totaro, B.: Chow groups, Chow cohomology, and linear varieties. Forum Math. Sigma 2, e17, 25 (2014)Google Scholar