Revista Matemática Complutense

, Volume 31, Issue 2, pp 287–331 | Cite as

Commutators of Calderón–Zygmund and generalized fractional integral operators on generalized Morrey spaces

  • Ryutaro Arai
  • Eiichi NakaiEmail author


We consider the commutators [bT] and \([b,I_{\rho }]\), where T is a Calderón–Zygmund operator, \(I_{\rho }\) is a generalized fractional integral operator and b is a function in generalized Campanato spaces with variable growth condition. We give necessary and sufficient conditions for the boundedness of the commutator on generalized Morrey spaces with variable growth condition.


Morrey space Campanato space Variable growth condition Singular integral Fractional integral Commutator 

Mathematics Subject Classification

42B35 46E30 42B20 42B25 



The authors would like to thank the referees for their careful reading and many useful comments. The second author was supported by Grant-in-Aid for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Science.


  1. 1.
    Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31(1), 7–16 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7(3–4), 273–279 (1987)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103(3), 611–635 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Di Fazio, G., Ragusa, M.A.: Commutators and Morrey spaces. Boll. Un. Mat. Ital. A (7) 5(3), 323–332 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jpn. 60(3), 539–550 (2004)Google Scholar
  7. 7.
    Eridani, Gunawan, H., Nakai, E., Sawano, Y. : Characterizations for the generalized fractional integral operators on Morrey spaces. Math. Inequal. Appl. 17(2), 761–777 (2014)Google Scholar
  8. 8.
    Fujii, N.: A proof of the Fefferman-Stein-Strömberg inequality for the sharp maximal functions. Proc. Am. Math. Soc. 106(2), 371–377 (1989)zbMATHGoogle Scholar
  9. 9.
    Fu, X., Yang, D., Yuan, W.: Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces. Taiwan. J. Math. 18(2), 509–557 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grafakos, L.: Modern Fourier Analysis, Third Edition, Graduate Texts in Mathematics, vol. 250. Springer, New York (2014)Google Scholar
  11. 11.
    Gunawan, H.: A note on the generalized fractional integral operators. J. Indones. Math. Soc. (MIHMI) 9(1), 39–43 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gunawan, H., Eridani, E.: Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 49(1), 31–39 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gunawan, H., Sawano, Y., Sihwaningrum, I.: Fractional integral operators in nonhomogeneous spaces. Bull. Aust. Math. Soc. 80(2), 324–334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Iida, T.: Weighted estimates of higher order commutators generated by BMO-functions and the fractional integral operator on Morrey spaces. J. Inequal. Appl. 4, 23 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat. 16(2), 263–270 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Komori-Furuya, Y.: Local good-\(\lambda \) estimate for the sharp maximal function and weighted Morrey space. J. Funct. Spaces 651825, 4 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Komori, Y., Mizuhara, T.: Notes on commutators and Morrey spaces. Hokkaido Math. J. 32(2), 345–353 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mizuhara, T.: Commutators of singular integral operators on Morrey spaces with general growth functions, Harmonic analysis and nonlinear partial differential equations (Kyoto, 1998). Sûrikaisekikenkyûsho Kôkyûroku 1102, 49–63 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Nakai, E.: Pointwise multipliers for functions of weighted bounded mean oscillation. Studia Math. 105(2), 105–119 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nakai, E.: Pointwise multipliers on the Morrey spaces. Mem. Osaka Kyoiku Univ. III Nat. Sci. Appl. Sci. 46(1), 1–11 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nakai, E.: On generalized fractional integrals. Taiwan. J. Math. 5(3), 587–602 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nakai, E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn. 54(3), 473–487 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nakai, E.: On generalized fractional integrals on the weak Orlicz spaces, \(\text{BMO}_{\phi }\), the Morrey spaces and the Campanato spaces. In: Function Spaces, Interpolation Theory and Related Topics, pp. 389–401. de Gruyter, Berlin (2002)Google Scholar
  25. 25.
    Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math. 176(1), 1–19 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Studia Math. 188(3), 193–221 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nakai, E.: A generalization of Hardy spaces \(H^p\) by using atoms. Acta Math. Sin. (Engl. Ser.) 24(8), 1243–1268 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nakai, E.: Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev. Mat. Complut. 23(2), 355–381 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nakai, E.: Generalized fractional integrals on generalized Morrey spaces. Math. Nachr. 287(2–3), 339–351 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nakai, E., Sobukawa, T.: \(B^u_w\)-function spaces and their interpolation. Tokyo J. Math. 39(2), 483–516 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nakai, E., Sumitomo, H.: On generalized Riesz potentials and spaces of some smooth functions. Sci. Math. Jpn. 54(3), 463–472 (2001)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Japan 37, 207–218 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nakai, E., Yoneda, T.: Bilinear estimates in dyadic BMO and the Navier–Stokes equations. J. Math. Soc. Jpn. 64(2), 399–422 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nakamura, S., Sawano, Y.: The singular integral operator and its commutator on weighted Morrey spaces. Collect. Math. 68(2), 145–174 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43, 663–683 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rosenthal, M., Triebel, H.: Calderón-Zygmund operators in Morrey spaces. Rev. Mat. Complut. 27, 1–11 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of morrey spaces. Trans. Am. Math. Soc. 363(12), 6481–6503 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Shirai, S.: Notes on commutators of fractional integral operators on generalized Morrey spaces. Sci. Math. Jpn. 63(2), 241–246 (2006)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Shirai, S.: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces. Hokkaido Math. J. 35(3), 683–696 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Sugano, S.: Some inequalities for generalized fractional integral operators on generalized Morrey spaces. Math. Inequal. Appl. 14(4), 849–865 (2011)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tsutsui, Y.: Sharp maximal inequalities and its application to some bilinear estimates. J. Fourier Anal. Appl. 17, 265–289 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Yabuta, K.: Generalizations of Calderón–Zygmund operators. Studia Math. 82, 17–31 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2017

Authors and Affiliations

  1. 1.Department of MathematicsIbaraki UniversityMitoJapan

Personalised recommendations